## Working Paper

# National Costs of the Metropolitan ITS Infrastructure: Update to the FHWA 1995 Report 

Melvyn Cheslow<br>Barbara L. Staples

Revised August 2000

## Preface

An addendum has been added to this report to update the estimates of the costs remaining to deploy Intelligent Transportation System (ITS) infrastructure elements in the 75 largest metropolitan areas in the United States. Specifically, this addendum provides estimates to the deployment costs expended through 1999 and then updates the remaining costs to deploy ITS infrastructures based on this 1999 deployment cost estimate. Sections of the report affected are $3 \mathrm{D}, 4$, and 5 . The addendum can be found at the end of the original report. The original report was dated September 1999 and published on the ITS JPO EDL as document \# 11923.

## TABLE OF CONTENTS

SECTION PAGE

1. INTRODUCTION ..... 1
2. STEPS USED TO PRODUCE THE 1995 NATIONAL ITS INFRASTRUCTURE COST ESTIMATE ..... 3
3. UPDATES TO THE 1995 NATIONAL ITS COST ESTIMATE ..... 9
3A. Changes to Unit Costs ..... 9
3B. Changes to the Cost Elements ..... 14
3C. Changes to the Number of Metropolitan Areas in Each of Three Size Groups ..... 18
3D. Changes to Market Penetration in Base Year ..... 19
4. ALTERNATIVE VALUES OF FULL MARKET PENETRATION ..... 23
5. CONCLUSIONS AND NEXT STEPS ..... 28
5A. Conclusions ..... 28
5B. Next Steps ..... 32
APPENDIX A
APPENDIX B
APPENDIX C
ADDENDUM

## EXECUTIVE SUMMARY

This working paper has been prepared to provide new estimates of the costs to deploy Intelligent Transportation System (ITS) infrastructure elements in the largest metropolitan areas in the United States. It builds upon estimates that were distributed in June 1995 by the Federal Highway Administration (FHWA). ${ }^{1}$ Since 1995, new sources of ITS cost estimates have appeared. Hence, it is now useful to determine whether the national deployment cost estimate has changed appreciably.

## Methodology for Estimating National ITS Costs

When deployment costs are estimated at the national level, decisions must be made on the level of aggregation that will be used, as well as several other steps. The 1995 FHWA cost estimates used the following seven steps:

1. Decision on cost categories, and method for aggregating to national totals:
a. Capital and annual O\&M costs
b. Largest metropolitan areas grouped into three size classes, and then aggregated to a national total.
2. Choice of cost elements
3. Estimation of average unit costs
4. Decision on the size ranges of the three metropolitan groups, and selection of an average, or generic, area, for each of the three groups.
5. Decision on the market penetration, or market size, in the base year for each cost element.
6. Decision on the number of each cost element (market size) in each of the three metropolitan size groups for full ITS deployment.
7. The last step is to carry out the necessary arithmetic.

## Methodology for Modifying the Cost Estimates

This working paper used essentially the same seven steps as above, and made several modifications to the decisions based on the new data, as follows (steps above are indicated in parentheses):

- Changes to the cost elements that are used (step \#2)
- Changes to average unit costs (step \#3)
- Changes to the number of metropolitan areas that are in each of the three size groups (step \#4)
- Changes to the market penetration in the base year (step \#5)

[^0]- Changes to market size for full deployment have been addressed in a parametric analysis (step \#6).


## Conclusions

The paper has developed a significant amount of new information that affects national ITS infrastructure costs. Readers will see that changes have been made both at the individual cost element level, as well as in the number of metropolitan areas that fall into different size classes. The details of these changes are discussed in Section 3.

Those who want to know what the new values are for national ITS deployment costs, and what were the significant factors in the changes, should examine Section 5.

There are fairly large increases in the costs for the three generic geographic areas in both Capital and Annual O\&M Costs, however, these are offset by a reduction in the number of metropolitan areas in each size class. The net result is almost no change in total costs. Nationally, the estimate for the capital costs of fully deploying ITS in metropolitan areas has changed from $\$ 74.4$ billion to $\$ 73.0$ billion, a decrease of 2 percent. The estimate for $\mathrm{O} \& \mathrm{M}$ costs increased from $\$ 7.3$ billion to 7.6 billion, or 4 percent. These changes account for all of the modifications to the cost estimates, which were listed above, except for the modifications to the market size for full deployment.

A different view of the summary data can be taken, where the interest is on the cost of the 75 largest metropolitan areas. The capital costs for the top 75 are estimated to increase by 20 percent, from $\$ 31.5$ billion to $\$ 37.7$ billion. Annual $O \& M$ costs for the top 75 areas increase 33 percent, from $\$ 3.3$ billion to $\$ 4.3$ billion per year.

The major difference between the small changes, nationally, and the larger ones for the top 75 metropolitan areas, is that the new estimates for the national-level costs involve a major decrease in the number of metropolitan areas that are being considered, while the estimates for the top 75 areas keep the number of areas constant, at 75.

To summarize, the new numerical results are as follows:

- National capital costs for 300 MSAs
- National annual O\&M costs for 300 MSAs
- Capital costs for 75 largest MSAs
- Annual O\&M costs for 75 largest MSAs
$\$ 73.0$ billion
$\$ 7.6$ billion
$\$ 37.7$ billion
$\$ 4.3$ billion

To investigate how the level of full deployment might affect the estimate of investment needs, a parametric analysis was performed for the generic large and medium areas. This analysis was performed for three different constant values - $50 \%, 67 \%$, and $80 \%$ - for the percent that the deployment levels might be of the full deployment quantities used in the remainder of the paper.

The $100 \%$ level was defined as the "could" case, while the lower percentages were defined as possible "should" cases.

For example, for "Should" deployment levels equal to $67 \%$ of the Could levels, the generic large area would only need $\$ 393$ million, on average, instead of $\$ 589$ million. Furthermore, if we take into account that, on average, $14.8 \%$ of the "should" case full deployment has already occurred, then only $\$ 334$ million would be required. Hence, it can be seen that an estimate of the investment needed at the national level depends quite heavily on the values estimated for the Should Case and Base Case (1997) deployment levels.

## SECTION 1. INTRODUCTION

This working paper has been prepared to provide new estimates of the costs to deploy metropolitan Intelligent Transportation System (ITS) infrastructures in the largest metropolitan areas in the United States. It builds upon estimates that were distributed in June 1995 by the Federal Highway Administration (FHWA). ${ }^{1}$ Since 1995, new sources of ITS cost estimates have appeared. Hence, it is now useful to determine whether the national deployment cost estimate has changed appreciably.

The 1995 report used data from the Phase I National ITS Architecture Program ${ }^{2}$, as well as other data sources in several states. ${ }^{3}$ The current working paper has used two new data sources from TransCore ${ }^{4}$ and CH2M Hill ${ }^{5}$. Both of these sources used the June 1995 report (Reference 1) as their starting point, and then added information from more recent local deployments. In addition, the Mitretek report utilized cost estimates from two other recent sources. ${ }^{6}$

Structure of This Working Paper The paper has four additional sections and two appendices. Section 2 presents and describes the original cost spread sheet that was developed in Reference 1. It also presents the methodology that was used there as a seven step process. FHWA's discussion of their methodology and deployment scenarios are reproduced in Appendix A. Their detailed cost spreadsheet is reproduced in Appendix B.

In Section 3, updates are described for several of the seven steps that were described in Section 2. The updates have all been made using new estimates that have become available after 1995. After each update is described, a new cost spreadsheet is introduced to show the effect of changing that step. These detailed spreadsheets are shown in Appendix C. Several summary tables are presented in Section 3 that show the incremental effect of each update. The longer tables from Section 2 and Section 3 were placed in Appendices B and C, so that the flow of text can be more easily followed.

[^1]Section 4 provides a discussion of the current status of our ability to update estimates of the Full Market Penetration levels. Section 5 presents some conclusions and recommendations.

The detailed tables in Section 3 and Appendix C present a significant amount of new information that affects national ITS infrastructure costs. New cost elements are introduced, as are new values for the base-year deployment levels. Some analysts who need to understand how the costs on ITS elements are determined, will want to review the detailed tables carefully, to check on the accuracy of the assumptions and the results.

For those who may only need to understand what new information has been used, and how it has changed the national cost estimates, reading Section 2, and reviewing the summary tables in Sections 3 and 5, will be of value.

Finally, for those who may just want to know what the new values are for national ITS deployment costs, and what were the significant factors in the changes, the tables in Section 5 may be satisfactory.

## SECTION 2. STEPS USED TO PRODUCE THE 1995 NATIONAL ITS COST ESTIMATE

When deployment costs are estimated at the national level, or even at a metropolitan level, a decision must be made on the level of aggregation that will be used. At one extreme, one could attempt to be very precise, and make estimates for every ITS project that would be implemented in the next several years. Each project is made up of many elements, -- e.g., equipment, facilities, communications, staff -- and therefore, the costs for each of these elements would be considered, and then aggregated for each project, then for each metropolitan area, and finally, nationally. At the other extreme, one could make a single national estimate of the implementation costs using a factor such as ITS implementation cost per mile of roadway, or cost per vehicle miles traveled (VMT). The data are not readily available to carry out either of these two extreme approaches.

However, an intermediate approach can be used, which has less stringent data requirements. The 1995 FHWA cost estimates did just that. That estimate used the following seven steps:

1. Decision on definitions and the level of aggregation:
A. The analysis estimates costs for each metropolitan area, and then aggregates to obtain a national total.
B. The average unit cost for each cost element is held constant throughout the analysis. This assumes that there is no change in unit costs over the implementation time period. It also assumes that there are no scale economies (or diseconomies), or geographic variations in the unit costs. This is a fundamental simplifying assumption.
C. Two categories of cost were estimated for each cost element: capital, and annual O\&M costs
D. The geographic extent of ITS implementations in a metropolitan area varies according to area population. For the 1995 analysis, three size groupings were selected, large, medium and small, and every metropolitan area was assigned to one of the three groups.
2. Choice of cost elements, for both ITS and supporting functions. The cost elements were initially based on the Phase I ITS Architecture project. Some of the more technologically advanced aspects of the architecture, such as automated highways, and intersection collision avoidance, were eliminated. Other cost elements of the architecture were disaggregated, or augmented, based on data from recent ITS projects. (See footnote \#3.) The cost elements are listed in Table 2-1.

Table 2-1
Cost Elements, Unit Costs, and Units of Measurement Used in FHWA 1995 Report

COST ELEMENTS
UNIT COST CAPITOL (\$K)

UNIT COST
O \& M (\$K)
SURVEILLANCE
Point Detection (loops)
CCTV Cameras
Video Image Processing/inte
Environmental Sensors
HOV lane control \& monitoring
TRAVELER INFORMATION

Fixed CMS \& Controllers 200
10
Fixed HAR \& Controllers 20
Hybrid CMS 20
Ramp Meter Systems (per interchange) 40
1

Signal Upgrades 5
COMMUNICATION
Callboxes 5
Fiber-Optic Cable/mile 240
0.5

Signal Communication 10
Signal Communication
per intersection

## TMCs

Computers \& Hardware/TMC $680 \quad 34$
Software (various)/TMC $220 \quad 11$
Facilities and Communications/TMC 4000200
O \& M Personnel/TMC 0 50

| TRAVELER INFO CENTERS |  |  |
| :--- | ---: | ---: |
| Computers and Hardware | 102 | 5.1 |
| Software (various) | 300 | 15 |
| Facilities \& Communication | 4000 | 200 |
| Kiosks | 30 | 10 |
| O \& M Personnel | 0 | 50 |

TRANSIT MANAGEMENT CENTER
Computers \& Hardware 340
17
Software (various) $90 \quad 4.5$
Facilities \& Communication 4000200
O \& M Personnel 0 50

Table 2-1
Cost Elements, Unit Costs, and Units of Measurement Used in FHWA 1995 Report

| COST ELEMENTS | UNIT COST CAPITOL (\$K) | $\begin{aligned} & \text { UNIT COST } \\ & \text { O \& M } \\ & (\$ K) \end{aligned}$ |
| :---: | :---: | :---: |
| TRANSIT VEHICLE INTERFACES |  |  |
| Kiosks, cellular radio, etc per vehicle | 6.3 | 0.315 |
| EMERGENCY MANAGEMENT CENTERS |  |  |
| Computers \& Hardware | 340 | 17 |
| Software (various) | 60 | 3 |
| Facilities \& Communications | 4000 | 200 |
| O \& M Personnel | 0 | 50 |
| EMERGENCY VEHICLE SERVICES |  |  |
| Cellular radio, Communications/vehicle | 0.3 | 0.015 |
| INCIDENT MANAGEMENT EQUIPMENT |  |  |
| Vehicles | 50 | 2.5 |
| Portable HAR | 50 | 2.5 |
| Portable CMS | 30 | 1.5 |
| O \& M Personnel | 0 | 50 |
| SYSTEM DESIGN \& INTEGRATION |  |  |
| TMC, TIC, EMC, TRANSIT MC | 5400 | 0 |
| ELECTRONIC TOLL COLLECTION SYSTEM |  |  |
| Manual AVI (per lane) | 73 | 147 |
| Automatic AVI (per lane) | 70 | 48 |
| Manual Automatic AVI (per lane) | 125 | 116 |
| AVI Dedicated (per lane) | 16 | 5 |
| Express AVI (per lane) | 16 | 5 |
| AVI Plaza Computer equipment | 130 | 7 |
| ELECTRONIC FARE PAYMENT SYSTEM |  |  |
| Central Computer System | 3000 | 150 |
| Ticket Vending Machines | 60 | 3 |
| System Engr. Program Mgt., Installation | 16000 | 0 |
| Training \& Documentation | 80 | 4 |
| Bus Farebox | 7 | 0.35 |
| Station Controller | 20 | 1 |
| Turnstile | 27.5 | 1.375 |
| Ticket Office Machine \& Validator | 24.4 | 1.22 |
| Smart Card | 0.01 | 0.0005 |

3. Estimation of the average unit costs for each of the cost elements. There is flexibility in the "unit" that is chosen. For example, the unit cost may be defined as the cost per metropolitan area, cost per transportation management center, or cost per mile. As indicated in the reference in footnote \# 2, the unit costs came from several sources. Generally, the decision on what value to select when there was more than one source was made on the basis of engineering judgement about the ITS services. The unit costs and the units of measurement for each of the cost elements used in the 1995 report are shown in Table 2-1. For several of the cost elements, the units of measurement are not explicitly identified.
4. Decision on the three metropolitan size groups, and selection of an average, or generic, area, for each of the three groups. First, FHWA selected Detroit to be the generic area for the large-size group, since a modification of that area was used for analyzing costs and benefits of the National ITS Architecture ${ }^{7}$. FHWA then selected the population size classes: over 750,000 for large; 200,000 to 750,000, medium; and 50,000 to 200,000, small. Knoxville, Tennessee was the generic medium-sized area, and Cheyenne, Wyoming was the generic small area. FHWA then estimated that there were 75 large, 125, medium, and 200, small metropolitan areas in the country. These results are shown in Table 2-2.

Table 2-2
Parameters for the Three Size Classes and Generic Metro Areas As Used by FHWA (1995) to Estimate National Metropolitan Infrastructure Costs

| Size Class | Population Range | Generic Area | Number of Metro Areas <br> in the Size Class |
| :--- | :--- | :--- | :--- |
| Large | Over 750,000 | Detroit | 75 |
| Medium | 200,000 to 750,000 | Knoxville | 125 |
| Small | Under 200,000 | Cheyenne | 200 |

Source: Office of Traffic Management and Intelligent Transportation Systems (HTV-10), Cost Estimate and Assumptions for the Core Infrastructure, FHWA, June 1995. The ITS Infrastructure was called the Core Infrastructure in 1995.
5. Decision on the market penetration or market size in the base year for each cost element. This variable can also have different interpretations. It could be defined as the current average deployment for the metropolitan areas in each of the three size groups, or as zero penetration. The FHWA report chose zero penetration for every cost element, because no better data were available at that time. Because of this choice, they pointed out that their estimate of the full-deployment costs for ITS is a "worst case scenario". (This means that it is the highest cost scenario.)

[^2]6. Decision on the number of each cost element (market size) in each of the three metropolitan size groups for full ITS deployment. These numbers are selected to be consistent with the units of measurement chosen in step \#3. This step requires that the term "Full Deployment" be defined. It may be taken to be the maximum implementation that is possible, such as implementing adaptive signals at every arterial intersection; or as the implementation that meets certain traffic control standards; or as the level that is possible under budgetary constraints for a jurisdiction. The FHWA report generally used the first definition, namely the maximum possible. (This is consistent with the worst case scenario.) The number of each cost element for full deployment in the three size classes is shown in Appendix Table B-1.
7. The last step is to carry out the necessary arithmetic:

- The unit costs are multiplied by the number of units necessary for full deployment for each element in each of the three generic areas.
- For each of the three generic areas, the results for each element are added together to get the costs for all elements used in full deployment.
- These costs are multiplied by the number of metro areas in each of the three size classes to get the deployment costs for all metro areas in each size class.
- The costs for the three classes are added together to obtain the estimate of national deployment ITS costs in metropolitan areas.

The results of these arithmetic steps in the FHWA report are shown in Table B-2. At the bottom of that table, several summary cost values are shown. These are estimates of the capital costs and the annual $O \& M$ costs for the three generic metropolitan areas, for all metro areas in each of the three size classes, and for the national total for all metropolitan areas. For convenience, the summary cost values alone are also listed in Table 2-3. Note that life-cycle costs were not estimated, only the initial capital and annual O\&M costs.

In Section 3, these summary costs will be compared with the results of the changes that will be described in that section.

Table 2-3
Summary Costs from FHWA (1995) National Metropolitan Infrastructure Costs

| Geographic Descriptor | Capital Costs | Annual O\&M Costs |
| :--- | :---: | :---: |
| Generic Large Area | $\$ 420 \mathrm{M}$ | $\$ 44 \mathrm{M}$ |
| Generic Medium Area | $\$ 278 \mathrm{M}$ | $\$ 26$ |
| Generic Small Area | $\$ 41 \mathrm{M}$ | $\$ 4 \mathrm{M}$ |
| Total, Large Areas (75) | $\$ 31.5 \mathrm{~B}$ | $\$ 3.3 \mathrm{~B}$ |
| Total, Medium Areas (125) | $\$ 34.8 \mathrm{~B}$ | $\$ 3.2 \mathrm{~B}$ |
| Total, Small Areas (200) | $\$ 8.2 \mathrm{~B}$ | $\$ 0.8 \mathrm{~B}$ |
| National Total | $\$ 74.4 \mathrm{~B}$ | $\$ 7.3 \mathrm{~B}$ |

Source: Office of Traffic Management and Intelligent Transportation Systems (HTV-10), Cost Estimate and Assumptions for the Core Infrastructure, FHWA, June 1995. The ITS Infrastructure was called the Core Infrastructure in 1995.

## SECTION 3. UPDATES TO THE 1995 ESTIMATE OF NATIONAL ITS COSTS

This section discusses several modifications that to the original 1995 estimate of the national costs for full deployment of the metropolitan ITS infrastructure. ${ }^{8}$ These changes are presented in the following order, with the number following each change item identifying the step that it corresponds to in Section 2:

- Changes to unit costs (step \#3)
- Changes to the cost elements that are used (step \#2)
- Changes to the number of metropolitan areas that are in each of the three size groups (\#4)
- Changes to the market penetration in the base year (step \#5)

These changes are based on additional data that have become available since 1995.

Changes to full deployment levels have been addressed in a parametric analysis in Section 4. A parametric, or sensitivity, analysis has been used because of the lack of a common definition of full deployment, and because of a lack of data. New data are expected to be collected in the next two years that will allow for a more precise investigation.

## 3A. Changes to Unit Costs

There have been several new estimates of the unit costs of ITS elements. ${ }^{9}$ Some of the estimates are based on the cost elements that were developed for the final version of the National ITS Architecture ${ }^{10}$. These cost elements are generally more detailed than the ones that were shown in Table 2-1. The cost elements in the Architecture appear to Mitretek to be too detailed for a national-level analysis. In addition, there are some differences between the way that the cost elements are grouped in the National Architecture as compared to the Core ITS Infrastructure. ${ }^{11}$ Therefore, the updating of the FHWA unit costs has focused instead on two other recent reports, one by TransCore ${ }^{12}$, and the other by CH2M Hill. ${ }^{13}$

[^3]Table C-1 (in appendix C) shows the unit cost estimates that were made by the three sources (which are identified in footnotes 1, 12, and 13). For many of the cost elements, the two recent sources continued to use the original FHWA unit costs. Often this occurred for a cost element's capital costs, with a change in the rule of thumb used for the O\&M costs (e.g., $15 \%$ of capital costs, instead of 5\%).

Upon observing all of the cost elements that now populated Table C-1, Mitretek decided to restructure the groupings of the elements. A major reason for this had to do with the way that freeway and arterial-related elements were placed in the original tables. Surveillance elements for both freeways and arterials were grouped together in Tables 2-1 and C-1, as were the communications elements for both. Arterial and freeway control elements were grouped together under traveler information. ${ }^{14}$ With the new categorization, the freeway and arterial related elements were separated from each other, and arterial and freeway control groups were added.

The new categorization makes clearer what cost elements should be introduced for a new corridor, or area-wide project. It will facilitate the addition of new cost data sources, as will be seen in subsequent tables. The new categorization also will assist evaluators who compare the costs and benefits connected with a single ITS improvement, or group of improvements. For example, benefits of freeway services are usually analyzed separately from benefits of arterial ITS services.

Table 3-1 shows the synthesis that was performed for the unit cost estimates from the three sources described in Table C-1. These costs were changed from the original FHWA estimates whenever either of the other two more recent estimates differed from the original. Often, simple averages were used. The actual rules used are indicated in the table.

Table 3-1 not only contains revised unit costs for many of the cost elements in Table 2-1, it also contains unit costs for the additional cost elements that were introduced in references 12 or 13 . These additional cost elements are designated as [NEW] in Table 3-1, and will be discussed in Section 3B.

The updated unit costs from Table 3-1 are input into the original FHWA table, Table B-1, producing new national estimates, as shown in Table C-2. Note that Table C-2 includes the complete list of updated cost elements, similar to Table 3-1.

[^4]Table 3-1
Synthesis of Cost Elements and Unit Costs Based On
Core Infrastructure, TransCore, and CH2M Hill


Table 3-1
Synthesis of Cost Elements and Unit Costs Based On
Core Infrastructure, TransCore, and CH2M Hill

| ELEMENTS | UNIT COST CAPITOL | SOURCE OF REVISED CAPITAL COSTS | $\begin{gathered} \hline \text { UNIT COST } \\ \text { O \& M } \\ \hline \end{gathered}$ | SOURCE OF REVISED O\&M COSTS |
| :---: | :---: | :---: | :---: | :---: |
|  | (\$K) | C = Core; T = TransCore; S = Seattle; M = Mitretek; AV. = Average; AV3 = AV. of C, T, S | (\$K) | C = Core; T = TransCore; S = Seattle; $\mathrm{M}=$ Mitretek; AV. = Average; $\mathrm{AV} 3=\mathrm{AV}$. of $\mathrm{C}, \mathrm{T}, \mathrm{S}$ |
| Facilities \& Communications/TMC | 4000 C |  | 400 | AV. C, T |
| O \& M Personnel/TMC | 0 |  | 50 | C |
| TRAVELER INFORMATION CENTER |  |  |  |  |
| Computers and Hardware | 100 | C | 1015 | AV. C, T |
| Software (various) | 300 | C |  | C |
| Facilities \& Communication (stand-alone) | 4000 | C | 400 | AV. C, T |
| O \& M Personnel | 0 |  | 50 | C |
| EMERGENCY RESPONSE CENTER |  |  |  |  |
| Computers \& Hardware | 340 | C | 17 | C |
| Software (various) | 60 | C | 3400 | $\stackrel{C}{C}$ |
| Facilities \& Communications (stand-alone) | 4000 | C |  |  |
| O \& M Personnel | 0 |  | 50 | C |
| EMERGENCY SERVICES EQUIPMENT |  |  |  |  |
| Cellular radio, comm. services per vehicle | 0.3 | C | 0.02 | C |
| TRANSIT MANAGEMENT CENTER |  |  |  |  |
| Computers \& Hardware | 340 | C | 51 | AV. T, S |
| Software (various) | 120 | AV. C, S | 6 | C |
| Facilities \& Communication (stand-alone) | 4000 | C | 400 | AV. T, S |
| O \& M Personnel | 0 |  | 50 | C |
| SUBTOTAL (\$K) |  |  |  |  |
| TRANSIT VEHICLE INTERFACES |  |  |  |  |
| Cellular radio, display, etc per vehicle | 6.3 | C | 0.47 | AV. C, T |
| AVI Transponder (on Signal Priority routes) [NEW] | 0.6 | S | 0.01 | S |
| In-vehicle AVL equip. per vehicle [NEW] | 9 | S | 1.5 | S |
| ELECTRONIC FARE PAYMENT SYS <br> In Transit Mgmt Center |  |  |  |  |
| Central Computer System | 3000 | C | 150 | C |
| Training \& Documentation At ticketing site | 80 | C | 4 | C |
| Station Controller [DELETE] | 20 | C | 1 | C |
| Ticket Office Machine \& Validator | 24 | C | 1.2 | C |
| Ticket Vending Machines | 60 | C | 3 | C |
| Turnstile [DELETE] On Transit Vehicles | 27.5 | C | 1.4 | C |
| Bus Farebox | 7 | C | 0.35 | C |
| Smart Card | 0.003 | M | 0 |  |
| Sys Engineering. Etc. [MOVED] |  |  |  |  |
| ELECTRONIC TOLL COLLECTION SYS |  |  |  |  |
| AVI Plaza Computer equipment | 130 | C | 7 | C |
| Manual AVI (per lane) | 73 | C | 147 | C |
| Automatic AVI (per lane) | 70 | C | 48 | C |
| Manual Automatic AVI (per lane) | 125 | C | 116 | C |
| AVI Dedicated (per lane) | 16 | C | 5 | C |
| Express AVI (per lane) | 16 | C | 5 | C |
| SYS DESIGN \& INTEGRATION |  |  |  |  |
| TMC, TIC, EMC, Transit MC | 5400 | C | 0 |  |
| Electronic Fare Payment Sys | 5400 | $M$ (set equal to above line) | 0 |  |

The cost elements whose unit cost changes produced the largest changes in the generic large area capital costs between Tables B-1 and C-1 are listed here, along with their impacts ${ }^{15}$ :

- Loop detectors:
- Twisted pair wire to signals:
- Fiber optic cable on freeways:
- System Design for Electronic Fare Payment:

From $\$ 32 \mathrm{M}$ to $\$ 44 \mathrm{M}$
From $\$ 25 \mathrm{M}$ to $\$ 37.5 \mathrm{M}$
From \$96M to \$106M
From $\$ 16 \mathrm{M}$ to $\$ 5.4 \mathrm{M}$

To assist the reader in comparing the new estimates with the original FHWA ones, Table 3-2 provides a comparison of two different summary cost statistics -- one set from Table B-1, which was estimated by FHWA in 1995, and the other that occurs when the revised unit costs of Table 3-1 are used. (Note that only the revised unit costs are considered here, not the ones designated as [NEW]).

Table 3-2
Comparison of Summary Costs: FHWA Core Infrastructure Costs vs. Updated Unit Costs

| Geographic <br> Descriptor | Original <br> Capital <br> Costs | Updated <br> Capital <br> Costs | \% Change <br> Capital <br> Costs | Original <br> Annual <br> O\&M Costs | Updated <br> Annual <br> O\&M <br> Costs | \% Change <br> Annual <br> O\&M Costs |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Generic Large <br> Area | $\$ 420 \mathrm{M}$ | $\$ 425 \mathrm{M}$ | $1 \%$ | $\$ 44 \mathrm{M}$ | $\$ 48 \mathrm{M}$ | $9 \%$ |
| Generic <br> Medium Area | $\$ 278 \mathrm{M}$ | $\$ 284 \mathrm{M}$ | $2 \%$ | $\$ 26$ | $\$ 28 \mathrm{M}$ | $11 \%$ |
| Generic Small <br> Area | $\$ 41 \mathrm{M}$ | $\$ 42 \mathrm{M}$ | $4 \%$ | $\$ 4 \mathrm{M}$ | $\$ 4 \mathrm{M}$ | $11 \%$ |
| Large Areas | $\$ 31.5 \mathrm{~B}$ | $\$ 31.8 \mathrm{~B}$ | $1 \%$ | $\$ 3.3 \mathrm{~B}$ | $\$ 3.6 \mathrm{~B}$ | $10 \%$ |
| Medium Areas | $\$ 34.8 \mathrm{~B}$ | $\$ 35.4 \mathrm{~B}$ | $2 \%$ | $\$ 3.2 \mathrm{~B}$ | $\$ 3.4 \mathrm{~B}$ | $11 \%$ |
| Small Areas | $\$ 8.2 \mathrm{~B}$ | $\$ 8.5 \mathrm{~B}$ | $4 \%$ | $\$ 0.8 \mathrm{~B}$ | $\$ 0.9 \mathrm{~B}$ | $16 \%$ |
| National Total | $\$ 74.4 \mathrm{~B}$ | $\$ 75.7 \mathrm{~B}$ | $2 \%$ | $\$ 7.3 \mathrm{~B}$ | $\$ 7.9 \mathrm{~B}$ | $11 \%$ |

Note: Numbers are rounded
This table shows that with the revised estimates of unit costs (and all other factors left unchanged), the national-level capital costs increase by about $2 \%$, and annual O\&M costs by about $11 \%$. These differences are relatively small, compared to the ones which will be presented in the remainder of Section 3.

[^5]
## 3B. Changes to the Cost Elements

There were several changes made to the cost elements by the two newer cost reports. These changes fell into three classes. First were cost elements that were added to the FHWA list. Second were disaggregations of FHWA cost elements. For example, a variable message sign element was disaggregated into the sign, itself, and the supporting structure. Many disaggregations were used here, because they made the physical and operational makeup of the cost elements clearer. The last change was deleting cost elements.

Table 3-1, which was first introduced in Section 3A., listed all of the cost elements that have been identified in any of the three relevant reports. The elements fall into one of these classes:

- Those elements with unchanged unit costs
- Those elements with updated unit costs
- Those elements that were added to the original FHWA list, identified as [NEW]
- Those that have been deleted from the FHWA list, identified as [DELETED]

Table 3-1 also identified the unit costs, and the source(s) of the new costs. A list of all of the cost elements, along with the quantities that have been selected, is provided in Table 3-3.

During the updating, Mitretek worked to ensure that unnecessary redundancy, or doublecounting, was not introduced in the quantities of any of the cost elements, due to of differences in the element descriptions in the three source documents. This was particularly applied to the surveillance processing and communications elements.

As an example of this effort, consider leased communications services, which were a major category of cost elements that were identified as [NEW] in Table 3-1. Estimates of unit costs for the leased lines are provided in that table. However, to prevent double-counting of owned and leased communications lines when estimating metropolitan costs, the quantity of leased lines was set to zero in the following analyses, and only owned lines are counted, as shown in Table 3-3. Obviously, many actual areas will choose leased lines instead of, or in addition to, owned lines. But, for simplicity, only one type is assumed throughout this report.

Table 3-3
Updated List of ITS Cost Elements and Quantities for Large, Medium and Small SMAs

| ELEMENTS | QUANTITY LARGE SMAs | QUANTITY MEDIUM SMAs | QUANTITY SMALL SMAs |
| :---: | :---: | :---: | :---: |
| SURVEILLANCE - ARTERIALS |  |  |  |
| Loop Detectors per signal per approach lane | 30,000 | 15,000 | 500 |
| Other arterial loop detectors | 3,600 | 6,400 | 600 |
| Overhead Point Detectors [NEW] | 0 | 0 | 0 |
| Processor (170 series), 1 per direction per half mile (Arterials) [NEW] | 10,000 | 4,000 | 200 |
| CCTV Cameras per signalized intersection | 250 | 150 | 60 |
| CCTV pole and foundation [NEW] | 250 | 150 | 60 |
| Video Image Processing/intersection | 250 | 150 | 0 |
| AVI equip. to identify priority veh./intersection [NEW] | 2500 | 1500 | 50 |
| AVL equip (to supplement GPS)/site [NEW] | 3 | 0 | 0 |
| SURVEILLANCE - FREEWAYS |  |  |  |
| Loop Detectors per fwy lane per half mile | 6,400 | 3,600 | 400 |
| Overhead Point Detectors [NEW] | 0 |  | 0 |
| Data Station (Fwy), 1 per half mile [NEW] | 800 | 600 | 100 |
| CCTV Cameras per freeway mile | 400 | 300 | 50 |
| CCTV pole and foundation [NEW] | 400 | 300 | 50 |
| Emissions \& Environmental Sensors | 100 | 70 | 20 |
| COMMUNICATION - ARTERIALS |  |  |  |
| Twisted-pair to Signals (per intersection) | 2500 | 1500 | 50 |
| Wireless radio [NEW] | 0 | 0 | 0 |
| Leased line to signals [NEW] | 0 | 0 | 0 |
| Leased line to video [NEW] | 0 | 0 | 0 |
| COMMUNICATION - FREEWAYS |  |  |  |
| Fiber-Optic Cable/ freeway mile | 400 | 300 | 50 |
| Fiber-optic hub-1 per 5 mi . of fiber [NEW] | 0 | 0 | 0 |
| Leased line to video [NEW] | 0 | 0 | 0 |
| TRAFFIC SIGNAL CONTROL |  |  |  |
| Central Computer System (Closed Loop) NEW | 0 | 0 | 0 |
| Central Computer System (Distributed) NEW | 0 | 0 | 0 |
| Master controllers for distributed system (1 per 25 intersections) [NEW] | 100 | 60 | 2 |
| Signal controller replacement per intersection [NEW] | 0 | 0 | 0 |
| Signal controller upgrade (per intersection) | 2500 | 1500 | 50 |
| Signal Preemption: Transit, Emergency Vehicle, RR [NEW] | 125 | 0 | 0 |
| FREEWAY MANAGEMENT @ ROADSIDE |  |  |  |
| HOV lane control \& monitoring equip. | 10 | 8 | 0 |
| Ramp Meter Systems (per interchange) | 400 | 300 | 0 |
| TRAVELER INFORMATION @ ROADSIDE/SITE |  |  |  |
| Full Matrix VMS \& Controllers (without structure) | 100 | 75 | 25 |
| Overhead Structure[Separated out] | 100 | 75 | 25 |
| Hybrid VMS with structure (Arterials) | 100 | 80 | 0 |
| Fixed HAR \& Controllers | 10 | 7 | 2 |
| Callboxes: each direction per half-mile | 1600 | 1200 | 0 |
| Kiosks | 200 | 150 | 50 |
| INCIDENT MANAGEMENT EQUIPMENT |  |  |  |
| Portable VMS | 15 | 10 | 10 |
| Portable HAR | 10 | 5 | 3 |
| Special Pickup Trucks (w. Dynamic Route Guidance) | 40 | 25 | 0 |
| O \& M Personnel | 40 | 30 | 5 |

Table 3-3
Updated List of ITS Cost Elements and Quantities for Large, Medium and Small SMAs

| ELEMENTS | QUANTITY LARGE SMAs | QUANTITY MEDIUM SMAs | QUANTITY SMALL SMAs |
| :---: | :---: | :---: | :---: |
| TRANSPORTATION MGMT CTRS (Number per metro area) | 6 | 4 | 1 |
| Central Dispatch/Routing Equip (I per area) [NEW] | 1 | 1 | 0 |
| Computers \& Hardware/TMC | 100\% | 80\% | 70\% |
| Software (various)/TMC | 1 |  | 1 |
| Facilities \& Communications/TMC | 100\% | 80\% | 70\% |
| O \& M Personnel/TMC | 36 | 24 | 15 |
| TRAVELER INFORMATION CENTER |  |  |  |
| Computers and Hardware | 100\% | 80\% | 70\% |
| Software (various) | 1 | 1 | 1 |
| Facilities \& Communication (stand-alone) | 100\% | 80\% | 70\% |
| O \& M Personnel | 30 | 25 | 10 |
| EMERGENCY RESPONSE CENTER |  |  |  |
| Computers \& Hardware | 100\% | 80\% | 70\% |
| Software (various) | 1 | 1 | 1 |
| Facilities \& Communications (stand-alone) | 1 | 0.8 | 0.7 |
| O \& M Personnel | 3 | 2 | 1 |
| EMERGENCY SERVICES EQUIPMENT |  |  |  |
| Cellular radio, comm. services per vehicle | 3300 | 2500 | 500 |
| TRANSIT MANAGEMENT CENTER |  |  |  |
| Computers \& Hardware | 100\% | 80\% | 70\% |
| Software (various) | 1 | 1 | 1 |
| Facilities \& Communication (stand-alone) | 100\% | 80\% | 70\% |
| O \& M Personnel | 3 | 2 | 1 |
| TRANSIT VEHICLE INTERFACES |  |  |  |
| Cellular radio, display, etc per vehicle | 2000 | 1200 | 100 |
| AVI Transponder (on Signal Priority routes) [NEW] | 0 | 0 | 0 |
| In-vehicle AVL equip. per vehicle [NEW] | 0 | 0 | 0 |
| ELECTRONIC FARE PAYMENT SYSTEM In Transit Mgmt Center |  |  |  |
| Central Computer System | 1 | 1 | 0 |
| At ticketing site |  |  |  |
| Station Controller [DELETE] | 65 | 35 | 0 |
| Ticket Office Machine \& Validator | 100 | 80 | 0 |
| Ticket Vending Machines | 500 | 300 | 0 |
| Turnstile [DELETE] On Transit Vehicles | 600 | 400 | 0 |
| Bus Farebox | 2000 | 1200 | 0 |
| Smart Card | 2,000,000 | 1,000,000 | 0 |
| Sys Engineering. Etc. [MOVED] |  |  |  |
| ELECTRONIC TOLL COLLECTION SYSTEM |  |  |  |
| AVI Plaza Computer equipment | 20 | 10 | 0 |
| Manual AVI (per lane) | 30 | 10 | 0 |
| Automatic AVI (per lane) | 15 | 5 | 0 |
| Manual Automatic AVI (per lane) | 15 | 5 | 0 |
| AVI Dedicated (per lane) | 30 | 10 | 0 |
| Express AVI (per lane) | 30 | 10 | 0 |
| SYS DESIGN \& INTEGRATION |  |  |  |
| TMC, TIC, EMC, Transit MC | 100\% | 80\% | 70\% |
| Electronic Fare Payment System | 100\% | 60\% | 0\% |

The results of adding and deleting the new cost elements to Table C-2 are shown in Table C-3. The added or deleted cost elements that produced the largest changes in the generic large area capital costs between Tables C-2 and C-3 are listed here, with their impacts:

- AVI equipment to identify priority vehicles at intersections
- Processor ( 170 series) on arterials
- Data stations on freeways
- Turnstiles for automatic fare payment
$\$ 82 \mathrm{M}^{16}$
\$62M
\$20M
-\$16M

The summary information from Table C-2 is shown in Table 3-4, which compares the effect of updating the unit cost and the cost elements with updating the unit costs, alone.

Table 3-4
Comparison of Summary Costs:
Updated Unit Costs and Cost Elements vs. Updated Unit Costs, Alone

| Geographic <br> Descriptor | Capital <br> Costs: <br> Updated <br> Unit <br> Costs | Capital <br> Costs: <br> Updated <br> Unit Costs <br> \& Cost <br> Elements | \% <br> Difference | Annual <br> O\&M <br> Costs: <br> Updated <br> Unit Costs | Annual <br> O\&M Costs: <br> Updated Unit <br>  <br> Cost <br> Elements | Difference |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Generic Large <br> Area | $\$ 425 \mathrm{M}$ | $\$ 589 \mathrm{M}$ | $39 \%$ | $\$ 48 \mathrm{M}$ | $\$ 58 \mathrm{M}$ | $21 \%$ |
| Generic Medium <br> Area | $\$ 284 \mathrm{M}$ | $\$ 372 \mathrm{M}$ | $31 \%$ | $\$ 28 \mathrm{M}$ | $\$ 33 \mathrm{M}$ | $20 \%$ |
| Generic Small <br> Area | $\$ 42 \mathrm{M}$ | $\$ 50 \mathrm{M}$ | $18 \%$ | $\$ 4 \mathrm{M}$ | $\$ 5 \mathrm{M}$ | $8 \%$ |
| Large Areas | $\$ 31.8 \mathrm{~B}$ | $\$ 44.2 \mathrm{~B}$ | $39 \%$ | $\$ 3.6 \mathrm{~B}$ | $\$ 4.3 \mathrm{~B}$ | $21 \%$ |
| Medium Areas | $\$ 35.4 \mathrm{~B}$ | $\$ 46.5 \mathrm{~B}$ | $31 \%$ | $\$ 3.4 \mathrm{~B}$ | $\$ 4.1 \mathrm{~B}$ | $20 \%$ |
| Small Areas | $\$ 8.5 \mathrm{~B}$ | $\$ 9.9 \mathrm{~B}$ | $17 \%$ | $\$ 0.9 \mathrm{~B}$ | $\$ 1.0 \mathrm{~B}$ | $8 \%$ |
| National Total | $\$ 75.7 \mathrm{M}$ | $\$ 100.6 \mathrm{~B}$ | $33 \%$ | $\$ 7.9 \mathrm{M}$ | $\$ 9.4 \mathrm{~B}$ | $19 \%$ |

Note: Numbers are rounded
This table shows that updating the list of ITS cost elements increases the national-level capital costs by about $33 \%$, and annual O\&M costs by about $19 \%$. Hence, updating the list of costed elements has a much larger effect than changing the unit costs.

[^6]
## 3C. Changes to the Number of Metropolitan Areas in Each of the Three Size Groups

Of the reports that have been referenced so far, only the 1995 FHWA analysis ${ }^{17}$ has made an estimate of national ITS infrastructure costs. However, there is a study by Apogee Associates that did carry out a national-level calculation. ${ }^{18}$ For the metropolitan infrastructure investment part of their analysis, they took their unit costs from the National ITS Architecture, and then used the approach in the FHWA's Core Infrastructure Report to factor up to national totals. In essence, Apogee carried out the same seven steps that were described in Section 2, even though they used different cost elements and unit costs. For them, steps \#2 and \#3 were based on the National Architecture; these cost estimates were not utilized in this current paper because of their detail, as mentioned in Section 3A.

Apogee's treatment of step \#4, where they determined the number of Metropolitan Statistical Areas (MSAs)in each of the three size classes, produced some significantly different results from the FHWA paper. Using the same size class definitions, Apogee listed the MSAs that fell into each of the three size classes ${ }^{19}$. They found fewer areas in each of the three classes than did the FHWA, as shown in Table 3-5. Mitretek's check of a list of the MSAs from the Bureau of Census indicated that the Apogee list should be used.

Table 3-5
Number of Metropolitan Statistical Areas (MSAs) by Size Category

| Source | Large MSAs | Medium MSAs | Small MSAs |
| :---: | :---: | :---: | :---: |
| FHWA | 75 | 125 | 200 |
| Apogee | 60 | 105 | 132 |

Using the Apogee figures for the numbers of MSAs, the ITS costs change, as shown in Table C-3, and the summary costs change as shown in Table 3-6.

The incremental effect of reducing the number of metropolitan areas to the levels used by Apogee is fairly large, with estimates for both capital and O\&M costs at the national level dropping 20 percent. Note that there is no incremental change to the estimate for each generic area when the only variables being modified are the number of areas. Note, also, that except for rounding errors, $\mathrm{O} \& \mathrm{M}$ costs are reduced by the same percentage as are capital costs.
${ }^{17}$ FHWA, 1995, ibid.
${ }^{18}$ Apogee Associates, Final Report: ITS National Investment and Market Analysis, ITS America, May 1997
${ }^{19}$ For counts, see Apogee Associates, ibid. Table 3.1 on page 37. For the lists of MSAs, see Apogee Associates, Task C - Identification of Investment Requirements, ITS National Investment and Market Analysis, ITS America, May 1997

Table 3-6
Comparison of Summary Costs: Addition of Updated Number of Metropolitan Statistical Areas (MSAs) to Updated Unit Costs and Cost Elements

| Geographic <br> Descriptor <br> Capital <br> Costs: <br> Changed <br> Unit Costs <br> And Cost <br> Elements | Capital Costs: <br> Plus Addition <br> of Updated <br> Number of <br> MSAs | $\%$ <br> Difference | Annual <br> O\&M <br> Costs: <br> Updated <br> Unit Costs <br> $\&$ Cost <br> Elements | Annual <br> O\&M <br> Costs: Plus <br> Addition of <br> Updated <br> No. of <br> MSAs | Difference |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Generic Large <br> Area | $\$ 589 \mathrm{M}$ | $\$ 589 \mathrm{M}$ | $0 \%$ | $\$ 58 \mathrm{M}$ | $\$ 58 \mathrm{M}$ | $0 \%$ |
| Generic <br> Medium Area | $\$ 372 \mathrm{M}$ | $\$ 372 \mathrm{M}$ | $0 \%$ | $\$ 33 \mathrm{M}$ | $\$ 33 \mathrm{M}$ | $0 \%$ |
| Generic Small <br> Area | $\$ 50 \mathrm{M}$ | $\$ 50 \mathrm{M}$ | $0 \%$ | $\$ 4.8 \mathrm{M}$ | $\$ 4.8 \mathrm{M}$ | $0 \%$ |
| Large Areas | $\$ 44.2 \mathrm{~B}$ | $\$ 35.3 \mathrm{~B}$ | $-20 \%$ | $\$ 4.3 \mathrm{~B}$ | $\$ 3.5 \mathrm{~B}$ | $-20 \%$ |
| Medium Areas | $\$ 46.5 \mathrm{~B}$ | $\$ 39.1 \mathrm{~B}$ | $-16 \%$ | $\$ 4.1 \mathrm{~B}$ | $\$ 3.5 \mathrm{~B}$ | $-16 \%$ |
| Small Areas | $\$ 9.9 \mathrm{~B}$ | $\$ 6.6 \mathrm{~B}$ | $-34 \%$ | $\$ 0.96 \mathrm{~B}$ | $\$ 0.63 \mathrm{~B}$ | $-34 \%$ |
| National Total | $\$ 100.6 \mathrm{~B}$ | $\$ 80.9 \mathrm{~B}$ | $-20 \%$ | $\$ 9.4 \mathrm{M}$ | $\$ 7.6 \mathrm{~B}$ | $-20 \%$ |

Note: Numbers are rounded

## 3D. Changes to Market Penetration in Base Year

It is very important to recognize and account for previous ITS investments in making estimates of the additional expenditures that still must be made. To account for these prior expenditures, we must have the market penetration for the various cost elements for the current time period. Until recently, there were no data that could be used to estimate current market penetration for ITS infrastructure elements. Therefore, the national estimates by both FHWA and Apogee, and the other reports that have been referenced, have all used $0 \%$ for this parameter.

However, the FHWA has supported a data collection and analysis effort, which has now produced national-level estimates for the deployment percentages of the infrastructure elements in 1997. The estimates are based on data collected from 78 of the nation's largest metropolitan areas, by the Oak Ridge National Laboratory (ORNL) ${ }^{20}$. Deployment tracking boundaries were defined to be coincident with planning area boundaries established by the Metropolitan Planning

[^7]Organizations (MPOs). The 1997 deployment percentages can be factored into the cost tables to produce estimates of the percentages of the needed capital investment that has already been spent, and thus can be subtracted from the total needed capital to provide estimates of the investments that must still be made.

Since the ORNL survey only addressed the metropolitan areas in the FHWA's large size class ${ }^{21}$, a "quick and dirty" method was used by Mitretek to get deployment estimates for the medium and small classes. The ORNL report divided the 78 largest areas into three size classes. By examining the trends in the estimated deployment percentages for ORNL's three groups, and then extrapolating, estimates of market penetration percentages were produced for the FHWA's medium size-class. Then the metropolitan-wide ratios between the FHWA's medium and large percentages that were obtained were applied to the ratio of FHWA's small to medium size classes.

The effects on the detailed cost estimates of using the ORNL survey data are shown in Table C-5. The columns in this table are defined as follows:

- Two columns of numbers - CAPITAL COST LARGE, and CAPITAL COST MEDIUM -- are reproduced from Table C-4.
- Two columns - \% DEPLOYMENT BY 1997 LARGE and \% DEPLOYMENT BY 1997 MEDIUM -- have been estimated from the figures in reference 20.
- Two columns - CAP COST EXPENDED BY '97 LARGE and CAP COST EXPENDED BY '97 MEDIUM are the products of the two columns for large, and the two columns for medium, respectively. These columns give the estimated dollar expenditure on ITS metropolitan deployment through 1997.
- The final two columns -- UPDATED CAP COST LARGE and UPDATED CAP COST MEDIUM -- provide estimates of the remaining investment needed for large and medium areas, respectively.

Estimates for small metro areas have not been made for the individual cost elements, because of the informal estimating process that was used.

Moving some of the capital expenditures to a period earlier than the present makes those costs sunk costs, and hence they are excluded from the estimates of future capital costs. However, this change does not affect the estimates for annual O\&M costs for future years. The O\&M costs for

[^8]all of ITS capital costs must still be included in the future year estimates. ${ }^{22}$ Hence, the estimates for annual $O \& M$ costs remain unchanged, when the market penetration for the current time period is factored in. The results are shown in Table C-5.

The comparison of the new summary cost measures with those in Table 3-6 are shown in Table 3-7. The table indicates that about 15 percent of the needed capital cost for ITS for large metropolitan areas was expended by 1997, and that approximately 10 percent for the 300 largest was expended by 1997.

By comparing the detailed estimates in Table C-5 with those in Table C-4, it can be determined which cost elements have the largest reduction in future costs due to taking into account the investments that have already occurred. However, since some of the estimates in Table C-5 are only for the cost element groups, or categories, the group-level will be used for this reporting. The ITS infrastructure groups with the largest reductions in estimates of future Generic Large Area Capital Costs are as follows:

- Arterial Roadside Communications
- Electronic Fare Payment
- Freeway Roadside Communications

Reduction of \$17M
Reduction of \$15M
Reduction of \$10M

Detailed cost elements in each of these three infrastructure groups have been identified in the sections earlier as having major impacts from some of the updated estimates.

[^9]Table 3-7
Comparison of Full Deployment Summary Costs:
With and Without Addition of ORNL 1997 Deployment Levels

| $\begin{array}{c}\text { Geographic } \\ \text { Descriptor }\end{array}$ | $\begin{array}{c}\text { Capital Costs: } \\ \text { Without ORNL 1997 } \\ \text { Deployment Levels }\end{array}$ | $\begin{array}{c}\text { Capital Costs: } \\ \text { With ORNL 1997 } \\ \text { Deployment Levels }\end{array}$ | \% Difference | $\begin{array}{c}\text { Annual O\&M } \\ \text { Costs: Unchanged } \\ \text { by 1997 }\end{array}$ |
| :--- | :---: | :---: | :---: | :---: |
| Deployment Levels |  |  |  |  |$]$

Note: Numbers are rounded

## SECTION 4. ALTERNATIVE VALUES OF FULL MARKET PENETRATION

Earlier, in Section 3D, the recent availability of current market penetration estimates for ITS infrastructure was discussed, and these data were used to reduce the estimates of still-needed investments. There is a similar requirement to correctly determine the maximum amount of needed infrastructure investment. This is defined in Section 2 as step 6 in the cost estimation process. Several concepts for this maximum level have been proposed:

- The absolute maximum amount that could be deployed, limited only by the ability to differentiate the level of detail in the information provided
- The amount that a transportation engineer would determine should be deployed based upon good engineering practices, such as meeting certain traffic operation criteria
- The amount that an economic analyst would determine should be deployed, based on costs and benefits to travelers and others
- The amount that can be deployed based on budgetary limitations and competition of funds with non-ITS transportation solutions

There have been no data or analyses thus far to determine the level of deployment that any of these definitions would imply. However, it is believed that the full deployment levels used in the currently referenced reports generally correspond to the first bullet above, namely, the maximum amount that could be deployed. The other bullets correspond to lower levels of deployment.

To show how the level of full deployment might affect the estimate of investment needs, a simple parametric analysis of the values for full market penetration has been performed for this working paper. The analysis is carried out only for the generic large and medium areas. No areal aggregations are included.

This analysis has used different constant values for all cost elements for the percent that the "should" deployment levels might be of the"could"level. The three values are $50 \%, 67 \%$, and $80 \%$. The $100 \%$ level is also included, and is defined, using the terminology in the first bullet, as the "could" case, while the lower percentages are defined as possible "should" cases, as in the other bullets.

The approach for calculating the results for these various cases is to start with information in Table C-5, and then add the appropriate constant value for the "Should" Full-Deployment Percentage.

A simplified version of this calculation has been carried out using only the first-level cost elements (with the second level cost elements deleted). The resultant table -- with the should level being set equal to $80 \%$ of the could level -- is shown as Table 4-1. Table 4-1 uses the first-level values of the percent deployed by 1997 from Table 3-5. These vary for the generic large area from $0 \%$ up to $46 \%$. By carrying out the calculations and obtaining the sums for the two columns that show the Capital Cost for $80 \%$ of (Could Case-1997), it can be seen that $\$ 384$ million is obtained for the large area, and $\$ 273$ million for the medium area.
Table 4-1


|  |  | GENERIC LARGE METRO AREA |  |  | Should Case | GENERIC MEDIUM METRO AREA Should Case |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Major ITS Cost Elements | Capital Cost for Could Case (\$K) | \% <br> Deployed by 1997 | Cap Cost Through 1997 (\$K) | Full <br> Deployment $=80 \%$ of Could Case | Full Deployment 1997 Deployment | Capital Cost for Could Case (\$K) | \% Deployed by 1997 | Cap Cost Through 1997 (\$K) | Full <br> Deployment $=80 \%$ of Could Case | Full <br> Deployment 1997 <br> Deployment |
| SURVEILLANCE - ARTERIALS | \$203,535 | 3\% | \$5,181 | \$162,828 | \$157,647 | \$110,490 | 1\% | \$971 | \$88,392 | \$87,421 |
| SURVEILLANCE - FREEWAYS | \$44,640 | 14\% | \$6,145 | \$35,712 | \$29,567 | \$32,140 | 2\% | \$569 | \$25,712 | \$25,143 |
| COMMUNICATION - ARTERIALS | \$37,500 | 46\% | \$17,256 | \$30,000 | \$12,744 | \$22,500 | 40\% | \$9,005 | \$18,000 | \$8,995 |
| COMMUNICATION - FREEWAYS | \$106,000 | 9\% | \$9,540 | \$84,800 | \$75,260 | \$79,500 | 3\% | \$2,385 | \$63,600 | \$61,215 |
| TRAFFIC SIGNAL CONTROL | \$13,750 | 46\% | \$6,325 | \$11,000 | \$4,675 | \$8,100 | 40\% | \$3,240 | \$6,480 | \$3,240 |
| Freeway Management @ Roadside | \$16,500 | 13\% | \$2,145 | \$13,200 | \$11,055 | \$12,500 | 1\% | \$125 | \$10,000 | \$9,875 |
| Traveler Information @ Roadside | \$31,900 | 22\% | \$7,018 | \$25,520 | \$18,502 | \$24,015 | 9\% | \$2,161 | \$19,212 | \$17,051 |
| INCIDENT MANAGEMENT EQUIPMENT | \$3,050 | 31\% | \$946 | \$2,440 | \$1,495 | \$1,875 | 5\% | \$94 | \$1,500 | \$1,406 |
| TRANSPORTATION MGMT CENTERS | \$30,000 | 17\% | \$5,100 | \$24,000 | \$18,900 | \$16,456 | 5\% | \$823 | \$13,165 | \$12,342 |
| TRAVELER INFORMATION CENTER | \$4,402 | 0\% | \$0 | \$3,522 | \$3,522 | \$3,582 | 0\% | \$0 | \$2,865 | \$2,865 |
| EMERGENCY RESPONSE CENTER | \$4,470 | 43\% | \$1,922 | \$3,576 | \$1,654 | \$3,590 | 40\% | \$1,436 | \$2,872 | \$1,436 |
| EMERGENCY SERVICES EQUIPMENT | \$990 | 43\% | \$426 | \$792 | \$366 | \$750 | 40\% | \$300 | \$600 | \$300 |
| TRANSIT MANAGEMENT CENTER | \$4,460 | 23\% | \$1,026 | \$3,568 | \$2,542 | \$3,592 | 2\% | \$72 | \$2,874 | \$2,802 |
| TRANSIT VEHICLE INTERFACES | \$12,600 | 16\% | \$2,016 | \$10,080 | \$8,064 | \$7,560 | 5\% | \$378 | \$6,048 | \$5,670 |
| ELECTRONIC FARE PAYMENT SYS | \$55,520 | 27\% | \$14,916 | \$44,416 | \$29,500 | \$34,432 | 4\% | \$1,377 | \$27,546 | \$26,168 |
| ELECTRONIC TOLL COLLECTION SYS | \$8,675 | 36\% | \$3,123 | \$6,940 | \$3,817 | \$3,325 | 36\% | \$1,197 | \$2,660 | \$1,463 |
| SYS DESIGN \& INTEGRATION | \$10,800 | 40\% | \$4,320 | \$8,640 | \$4,320 | \$7,560 | 7\% | \$518 | \$6,048 | \$5,530 |
| TOTAL PER METRO AREA | \$588,792 |  | \$87,404 | \$471,034 | \$383,630 | \$371,967 |  | \$24,651 | \$297,573 | \$272,922 |
| Derived Percentage of Could Case |  |  |  |  |  |  |  |  |  |  |
| Capital Cost Expended Throug | h 1997 | 14.8\% |  |  |  |  | 6.6\% |  |  |  |
| Aggregate Level Calculations Using Derived Percentage | \$588,792 | 14.8\% | \$87,404 | \$471,034 | \$383,630 | \$371,967 | 6.6\% | \$24,651 | \$297,573 | \$272,922 |

Until the calculations for this table were actually completed, the 1997 percent deployed for the entire deployment was not known, because it depends upon the relative costs (weights) of the different cost elements. However, these values could be calculated after the table was completed, and the values of $14.8 \%$ for the large area and $6.6 \%$ for the medium area were obtained ${ }^{23}$.

It can be shown algebraically that as long as the percent for the "Should" Case is larger than the largest value for the 1997 percent deployment shown in Table C-5 (this largest value is $46 \%$ ), then the calculation shown in Table 4-1 can be carried out at an aggregate level, as indicated in the last row of Table $4-1$. These calculations use the $14.8 \%$ and $6.6 \%$ values that were obtained as discussed in the above paragraph.

Hence, the calculations for the other values for the should case ( $100 \%, 67 \%$, and $50 \%$ ) can be carried out at the aggregate level, and they produce the results shown in Table 4-2 and Figure 4-1.

Table 4-2 and Figure 4-1 show, for example, that if the "Should" deployment levels are found to be $67 \%$ of the Could levels, then the generic large area would only need $\$ 393$ million, instead of $\$ 589$ million. Furthermore, if we take into account that, $\$ 87.4$ million of the "should" case full deployment has already occurred, then only $\$ 305$ million would be required..

Hence, it can be seen that making an estimate of the investment needed at the national level depends quite heavily on the values estimated for the Should Case and Base Case (1997) deployment levels. Of course, it is likely, that these values will vary, not only by cost element, but also according to the geography and transportation networks of each specific area.

[^10]Table 4-2
Parametric Analysis of Changing From the "Could" Case Full Deployment Level to Various "Should" Cases

| GENERIC LARGE METRO AREA |  |  |  |  |  |  | GENERIC MEDIUM METRO AREA |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Capital <br> Cost for "Could" Case Full Deployment (\$M) | \% <br> Deployed <br> Through 1997 | Cap Cost Through 1997 (\$M) | Parametrically Selected "Should" Case Cap Costs as \% of "Could" Case | Capital Cost for "Should" Case Deployment (\$M) | Should Case Cap Cost 1997 Cap Cost (\$M) | ("Should" Case <br> - '97) Cap Cost as \% of <br> "Could" Case Cap Cost | Capital <br> Cost for <br> "Could" <br> Case Full <br> Deploy- <br> ment (\$M) | \% <br> Deployed Through 1997 | Cap Cost Through 1997 $(\$ M)$ | Parametrically Selected "Should" Case Cap Costs as \% of "Could" Case | Capital Cost for "Should" Case Deployment (\$M) | Should <br> Case Cap <br> Cost - <br> 1997 Cap <br> Cost (\$M) |
| \$589 | 14.8\% | \$87 | 100\% | \$589 | \$502 | 85\% | \$372 | 6.6\% | \$25 | 100\% | \$372 | \$347 |
| \$589 | 14.8\% | \$87 | 80\% | \$471 | \$384 | 65\% | \$372 | 6.6\% | \$25 | 80\% | \$298 | \$273 |
| \$589 | 14.8\% | \$87 | 67\% | \$393 | \$305 | 52\% | \$372 | 6.6\% | \$25 | 67\% | \$248 | \$223 |
| \$589 | 14.8\% | \$87 | 50\% | \$294 | \$207 | 35\% | \$372 | 6.6\% | \$25 | 50\% | \$186 | \$161 |



## SECTION 5. CONCLUSIONS AND NEXT STEPS

## 5A. Conclusions.

The detailed tables in Section 3 and Appendix $C$ have presented a significant amount of new information that affects the estimates of national ITS infrastructure costs. Major changes include the introduction of new cost elements, and new values for base-year deployment levels. We have also made changes to unit costs, and to the number of metropolitan areas that fall in different size classes.

These tables also indicate that the number of size classes, the choice of the generic area for each size class, and the geographic boundaries of the metropolitan areas, can all affect the estimate of the national total for metropolitan ITS deployment costs.

Tables 5-1 and 5-2 in this section show the new values for national ITS deployment costs, and the impacts of the various factors that have been examined. in the changes. Table 5-1 shows this information for capital costs and Table 5-2 for O\&M costs.

There are fairly large increases in the costs for the three generic geographic areas in both Capital and Annual O\&M Costs, however, these are offset by a reduction in the number of metropolitan areas in each size class. The net result is almost no change in total costs. Nationally, the estimate for the capital costs of fully deploying ITS in metropolitan areas has changed from $\$ 74.4$ billion to $\$ 73.0$ billion, a decrease of 2 percent. The estimate for O\&M costs increased from $\$ 7.3$ billion to 7.6 billion, or 4 percent. These changes account for all of the modifications to the cost estimates, which were listed above, except for the modifications to the market size for full deployment.

A different view of the summary data can be taken, where the interest is on the cost of the 75 largest metropolitan areas. In this case, the change in the number of MSAs that are considered is ignored, as are the costs for the medium and small areas. These results are shown in Tables 5-3 and $5-4$. The capital cost for the top 75 is estimated to increase by 20 percent, from $\$ 31.5$ billion to $\$ 37.7$ billion. Annual O\&M costs for the top 75 areas increase 33 percent, from $\$ 3.3$ billion to $\$ 4.3$ billion per year.

The major difference between the small changes in Tables 5-1 and 5-2, and the larger ones, in Tables 5-3 and 5-4, is that the first two tables involve a major decrease in the number of metropolitan areas that are being considered, while the latter two keep the number of areas constant, at 75.

To summarize, the new numerical results are as follows:

- National capital costs for 300 MSAs
- National annual O\&M costs for 300 MSAs
- Capital costs for 75 largest MSAs
- Annual O\&M costs for 75 largest MSAs
$\$ 73.0$ billion
$\$ 7.6$ billion
$\$ 37.7$ billion
$\$ 4.3$ billion

Table 5-1
Comparison of 1995 and Final Revised Capital Cost Estimates
With Percentage Changes Due to Each Updated Factor

| Geographic Descriptor | Capital Costs Estimated in FHWA 1995 Report | \% <br> Change <br> Due to Updated Unit Costs | \% <br> Change <br> Due to <br> Updated Cost <br> Elements | \% <br> Change <br> Due to <br> Updated MSAs | \% Change <br> Due to <br> Using 1997 <br> Deployment | Final Revised Capital Costs | Total \% Change From FHWA 1995 Report |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Generic Large Area | \$420M | 1 | 39 | 0 | -15 | \$502M | 20\% |
| Generic <br> Medium <br> Area | \$278M | 2 | 31 | 0 | -7 | \$348M | 25\% |
| Generic Small Area | \$40.8M | 4 | 18 | 0 | -3 | \$48.3M | 18\% |
| Large Areas | \$31.5B | 1 | 39 | -20 | -15 | \$30.1B | -4\% |
| Medium <br> Areas | \$34.8B | 2 | 31 | -16 | -7 | \$36.5B | 5\% |
| Small Areas | \$8.2B | 4 | 18 | -34 | -3 | \$6.4B | -22\% |
| National Total | \$74.4B | 2 | 33 | -20 | -12 | \$73.0B | -2\% |

Note: Numbers are rounded

Table 5-2

## Comparison of 1995 and Final Revised O\&M Cost Estimates With Percentage Changes Due to Each Updated Factor

| Geographic Descriptor | O\&M <br> Costs <br> Estimated <br> in FHWA <br> 1995 <br> Report | $\%$ <br> Change <br> Due to Updated Unit Costs | \% <br> Change <br> Due to Updated Cost Elements | $\%$ <br> Change <br> Due to <br> Updated MSAs | \% Change <br> Due to <br> Using 1997 <br> Deployment | Final Revised O\&M Costs | Total \% Change From FHWA 1995 Report |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Generic <br> Large Area | \$44M | 9.5 | 21 | 0 | 0 | \$58M | 33\% |
| Generic <br> Medium Area | \$26M | 11 | 20 | 0 | 0 | \$33M | 27\% |
| Generic <br> Small Area | \$4M | 11 | 8 | 0 | 0 | \$5M | 25\% |
| Large Areas | \$3.3B | 9.5 | 21 | -20 | 0 | \$3.5B | 6\% |
| Medium <br> Areas | \$3.2B | 11 | 20 | -16 | 0 | \$3.5B | 9\% |
| Small Areas | \$0.8B | 16 | 8 | -33 | 0 | \$0.64B | -20\% |
| National Total | \$7.3B | 11 | 19 | -20 | 0 | \$7.6B | 4\% |

Note: Numbers are rounded

Table 5-3
For 75 Large Metropolitan Statistical Areas (SMAs): Comparison of 1995 and Final Revised Capital Cost Estimates With Percentage Changes Due to Each Updated Factor

| Geographic <br> Descriptor | Capital Costs <br> Estimated in <br> FHWA 1995 <br> Report | \% Change <br> Due to <br> Updated <br> Unit Costs | \% Change <br> Due to <br> Updated <br> Cost <br> Elements | \% Change <br> Due to Using <br> 1997 <br> Deployment | Final <br> Revised <br> Capital <br> Costs | Total \% <br> Change From <br> FHWA 1995 <br> Report |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Generic <br> Large Area | $\$ 420 \mathrm{M}$ | $1 \%$ | $39 \%$ | $-15 \%$ | $\$ 502 \mathrm{M}$ | $+20 \%$ |
| 75 Large <br> MSAs | $\$ 31.5 \mathrm{~B}$ | $1 \%$ | $39 \%$ | $-15 \%$ | $\$ 37.7 \mathrm{~B}$ | $+20 \%$ |

Note: Numbers are rounded

Table 5-4
For 75 Large Metropolitan Statistical Areas (SMAs): Comparison of 1995 and Final Revised O\&M Cost Estimates With Percentage Changes Due to Each Updated Factor

| Geographic <br> Descriptor | O\&M Costs <br> Estimated in <br> FHWA 1995 <br> Report | \% Change <br> Due to <br> Updated <br> Unit Costs | \% Change <br> Due to <br> Updated <br> Cost <br> Elements | \% Change <br> Due to <br> Using 1997 <br> Deployment | Final <br> Revised <br> O\&M <br> Costs | Total \% <br> Change From <br> FHWA 1995 <br> Report |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Generic <br> Large Area | $\$ 43.5 \mathrm{M}$ | 9.5 | 21 | 0 | $\$ 57.8 \mathrm{M}$ | $+33 \%$ |
| 75 Large <br> MSAs | $\$ 3.26 \mathrm{~B}$ | 9.5 | 21 | 0 | $\$ 4.33 \mathrm{~B}$ | $+33 \%$ |

Note: Numbers are rounded
To investigate how the level of full deployment might affect the estimate of investment needs, a parametric analysis was performed for the generic large and medium areas. This analysis was performed for three different constant values - $50 \%, 67 \%$, and $80 \%$ - for the percent that the deployment levels might be of the quantities used in the remainder of the paper. The $100 \%$ level was defined as the "could" case, while the lower percentages were defined as possible "should" cases.

For example, for "Should" deployment levels equal to $67 \%$ of the Could levels, the generic large area would only need $\$ 393$ million, on average, instead of $\$ 589$ million. Furthermore, if we take into account that, on average, $14.8 \%$ of the "should" case full deployment has already occurred, then only $\$ 334$ million would be required. Hence, it can be seen that making an estimate of the investment needed at the national level depends quite heavily on the values estimated for the Should Case and Base Case (1997) deployment levels.

## 5B. Next Steps

Detailed investigation of two major factors will be carried out to extend this working paper. First will be an assessment of how the market penetration percentages depend on the metropolitan area definitions and their geographic extent.

Second will be further coordination with ORNL and FHWA concerning the ITS deployment tracking data, to ensure that the terminologies used here and in that study are used in a consistent fashion, and that the quantities of ITS infrastructure elements that have been reported are used correctly in the current study.

Based on our examinations of the costing literature, Mitretek will also provide suggestions to FHWA and ORNL on important ITS elements and sub-systems to add to the next ITS deployment survey.

As more ITS cost information becomes available, the unit cost estimates will be updated, allowing this paper to be revised as appropriate.

## APPENDIX A <br> ASSUMPTIONS FOR THE CORE INFRASTRUCTURE COST ESTIMATE AUGUST 1995

The following document contains the assumptions necessary to develop representative costs to deploy a core infrastructure of Intelligent Transportation Systems (ITS) strategies. Some elements (i.e., surveillance, communication, emergency vehicle management) do not lend themselves to a one-to-one correspondence with the seven core infrastructure areas but are listed under the most logical areas. To obtain the cost figures, information from systems in Texas, Virginia, Massachusetts, Washington, Georgia, Minnesota, Maryland, Delaware and California was gathered and discussions with experts in the area of traffic management systems were held. In the attached spreadsheet, the cost for deploying various ITS strategies nationwide is also estimated. The costs are a "worst case scenario" (unless otherwise noted) and reflect areas that are assumed to have no existing infrastructure. In this manner, areas with an existing infrastructure may scale back their costs accordingly. The general assumptions for each size (large, medium, and small) of metropolitan system follow.

Before the assumptions are discussed, it should be mentioned that technology for traffic management strategies is in a state of continual advancement. As technological advancements are made, technologies which were once considered state-of-the-art will be considered state-of-thepractice, and competition will adjust the costs accordingly. For example, as the use of nonintrusive detection methods (i.e., video image processing, acoustic detection, infrared technology) increases, the use of pavement loop detectors will decrease. This document represents state-of-the practice technologies (and their associated costs) which could instrument a core infrastructure of ITS technologies if they were procured and deployed in 1995.

## DEFINITIONS

Capital costs refer to the one-time procurement cost of the elements.
Operations and Maintenance costs are annual costs associated with operating and maintaining the necessary elements. Personnel costs are listed separately and are not included under O\&M. Maintenance is $5 \%$ of the non-recurring costs, unless otherwise noted, and does not include personnel costs. Maintenance work for surveillance, traveler information, communication, and transportation management centers is done by the same operations and maintenance personnel.

## LARGE METROPOLITAN SYSTEM

The large metropolitan area will be the size of Detroit, Michigan with 400 miles of freeway assumed. Interchanges are at 1 - mile spacings with all ramps metered. There are 4 lanes in each direction on the large metropolitan area's freeways. There are 12 approach lanes for each signalized intersection. There are assumed to be 2500 signalized intersections. Five additional TMCs ( 6 total) were included in the costs. For the purposes of this document, metropolitan statistical areas with populations over 750,000 were assumed as large.

## MEDIUM METROPOLITAN SYSTEM

The medium metropolitan area will be the size of Knoxville, Tennessee with 300 miles of freeway assumed. Interchanges are at 1-mile spacings with all ramps metered. There are 3 lanes in each direction on the medium metropolitan area's freeways. There are 10 approaches per signalized intersection, and 1500 signalized intersections are assumed. Three additional TMCs ( 4 total) were included in the costs. For the purposes of this document, metropolitan statistical areas with populations between 200,000-750,000 were assumed as medium.

## SMALL METROPOLITAN SYSTEM

The small area is the size of Cheyenne, Wyoming with 50 miles of freeway assumed. Interchanges are at 2 -mile spacings with no ramps metered. There are 2 lanes in each direction on the small freeways. There are 10 approach lanes for each signalized intersection, and 50 signalized intersections are assumed. For the purposes of this document, metropolitan statistical areas with populations between 50,000-200,000 were assumed as small.

## GENERAL ASSUMPTIONS

- Freeway mileage is given in centerline miles.
- One center each was assumed for traveler information, emergency management, and transit management. In actuality, some areas may co-locate their facilities.


## Computers

The elements under computers include video switches, graphical user interfaces, high capacity storage, cable television access, audio interface, computer monitors, video monitors, video cassette recorder and workstations. The costs for the medium, and small, metropolitan areas were scaled down to 0.8 and 0.7 , respectively, of the cost of a large system's computer needs.

## Software for the Various Centers is as Follows:

Transportation Management Center (Highway Advisory Radio library, traffic management, automated traffic control, HOV management, lane management, CMS library)
Traveler Information Center (route planning, traffic measurement, data fusion )
Transit Management Center (ride share, transit scheduling, dispatch and fleet management) Emergency Management Center (emergency management, vehicle tracking)

## Communications

This includes the communications equipment internal to the facility such as equipment racks, Sonet System, mulitplexers, modems, etc.

## Facilities

The facilities costs were based on purchasing as opposed to leasing space. A building of 23,000 square feet was assumed in the costs for a large system. The costs were scaled accordingly to 0.8 for medium and 0.7 for small. Some of the centers may be co-located.

## Field Hardware

- CCTV is at every mile of freeway and at $1 / 10$ th of the signalized intersections (trouble spots).
- Environmental Sensors detect road conditions (ice, fog, precipitation, pumping stations, tunnel ventilation, etc.)
- HOV Lane Monitoring and control includes the gates and hardware.
- Loop detectors are placed at half-mile spacings on the freeways across all lanes. They are also placed at every approach lane of signalized intersections and at intermediate locations.
- Call boxes are spaced at half-mile intervals in each direction.
- Video image processing (VIPS) is used at $1 / 10$ th of the signalized intersections for the large and medium metropolitan areas.
- Fiber-Optic cable costs include trenching, conduit, installation, and cable.
- Kiosk costs widely vary, depending on the level of integration with various transportation modes, the level of security required, and the type of installation (wall-mounted, freestanding indoor, outdoor ). A mid-range system was assumed. Capital costs include procurement of the kiosks, alarms, software adjustments, technical assistance. Annual costs include kiosk and software maintenance, training, leased dedicated phone lines, supplies, and software license fees.


## Incident Management Equipment

The vehicles mentioned in this section are pick-up trucks which have the materials necessary to change tires, direct traffic, make minor repairs, provide nominal amounts of fuel, push vehicles from the road, radio for help, and clean up minor accidents from the roads. They are not heavyduty towing trucks.

## System Design \& Integration

The costs for system design and integration were based on a large system. The costs for the medium and small areas were scaled accordingly to 0.8 for medium and 0.7 for a small system.

## Other

Under "Road Communication," costs are listed as per intersection. These costs include codecs, leased lines, video switches, and interconnection of signal.

## Electronic Toll Collection Systems

For large metropolitan areas, 15 lanes are assumed per toll plaza. For medium and small areas, 10 and 6 lanes are assumed, respectively. Large areas have 20 toll plazas and medium and small have 10 and 2, respectively. It is assumed that 40 percent of the lanes in the large and medium toll plazas use AVI technologies. The small metropolitan areas are assumed not to use AVI technology.

## Electronic Fare Payment Systems

The cost of proximity (smart) cards and related detection/communication equipment is not high, relatively speaking. Implementing a system, however, requires an extensive equipment base, communications infrastructure, and data processing center. These cost figures assume that the electronic fare payment system is installed on an existing transit infrastructure.

Software allows the smart cards to be used as a conventional stored value card, an employee pass, a discount value card (student or handicapped), a bus transfer, a bus farecard, and a parking lot farecard. As the use of the smart cards expands, additional software will be required to allow account reconciliation between different transportation providers accepting the same card, expanded control measures for a larger card population base, and specific operational requirements for both new and existing users.

## APPENDIX B

DETAILED TABLE OF
COST ELEMENTS, UNIT COSTS, FULL DEPLOYMENT SIZE, AND NATIONAL ITS METROPOLITAN INFRASTRUCTURE COSTS (AS DESCRIBED IN SECTION 2, FROM FHWA REPORT [REFERENCE 1])

Table B-1
Number of ITS Infrastructure Cost Elements in Each of the Three Size Classes

| ELEMENTS | QUANTITY <br> LARGE | QUANTITY <br> MEDIUM | QUANTITY <br> SMALL |
| :--- | :---: | :---: | :---: |


| SURVEILLANCE |  |  |  |
| :---: | :---: | :---: | :---: |
| Point Detection (loops) | 40,000 | 25000 | 1500 |
| CCTV Cameras | 650 | 450 | 110 |
| Video Image Processing/intersection | 250 | 150 | 0 |
| Environmental Sensors | 100 | 70 | 40 |
| HOV lane control \& monitoring equip. | 10 | 8 | 0 |
| TRAVELER INFORMATION |  |  |  |
| Fixed CMS \& Controllers | 100 | 75 | 25 |
| Fixed HAR \& Controllers | 10 | 7 | 2 |
| Hybrid CMS | 100 | 80 | 0 |
| Ramp Meter Systems (per interchange) | 400 | 300 | 0 |
| Signal Upgrades | 2500 | 1500 | 50 |
| COMMUNICATION |  |  |  |
| Callboxes | 1600 | 1200 | 0 |
| Fiber-Optic Cable/mile | 400 | 300 | 50 |
| Signal Communication per intersection | 2500 | 1500 | 50 |
| TMCs | 6 | 4 | 1 |
| Computers \& Hardware/TMC | 1 | 0.8 | 0.7 |
| Software (various)/TMC | 1 | 1 | 1 |
| Facilities and Communications/TMC | 1 | 0.8 | 0.7 |
| O \& M Personnel/TMC | 36 | 24 | 15 |
| TRAVELER INFO CENTERS |  |  |  |
| Computers and Hardware | 1 | 0.8 | 0.7 |
| Software (various) | 1 | 1 | 1 |
| Facilities \& Communication | 1 | 0.8 | 0.7 |
| Kiosks | 200 | 150 | 50 |
| O \& M Personnel | 30 | 25 | 10 |
| TRANSIT MANAGEMENT CENTER |  |  |  |
| Computers \& Hardware | 1 | 0.8 | 0.7 |
| Software (various) | 1 | 1 | 1 |
| Facilities \& Communication | 1 | 0.8 | 0.7 |
| O \& M Personnel | 3 | 2 | 1 |
| TRANSIT VEHICLE INTERFACES |  |  |  |
| Kiosks, cellular radio, etc per vehicle | 2000 | 1200 | 100 |

Table B-1
Number of ITS Infrastructure Cost Elements in Each of the Three Size Classes

| ELEMENTS | QUANTITY <br> LARGE | QUANTITY <br> MEDIUM | QUANTITY <br> SMALL |
| :--- | :---: | :---: | :---: |

## EMERGENCY MANAGEMENT CENTERS

| Computers \& Hardware | 1 | 0.8 | 0.7 |
| :--- | :--- | ---: | ---: |
| Software (various) | 1 | 1 | 1 |
| Facilities \& Communications | 1 | 0.8 | 0.7 |
| O \& M Personnel | 3 | 2 | 1 |

## EMERGENCY VEHICLE SERVICES

Cellular radio, Communications /vehicle 3300
2500
500
INCIDENT MANAGEMENT EQUIPMENT
Vehicles 40

Portable HAR 10
Portable CMS 15
O \& M Personnel 40
SYSTEM DESIGN \& INTEGRATION
TMC, TIC, EMC, TRANSIT MC 1
ELECTRONIC TOLL COLLECTION SYSTEM
Manual AVI (per lane) 30
Automatic AVI (per lane) 15
Manual Automatic AVI (per lane) 15
AVI Dedicated (per lane) 30
Express AVI (per lane) 30
AVI Plaza Computer equipment 20
ELECTRONIC FARE PAYMENT SYSTEM

| Central Computer System | 1 | 1 | 0 |
| :--- | ---: | ---: | ---: |
| Ticket Vending Machines | 500 | 300 | 0 |
| Sys Engr. Program Mgt., Installation | 1 | 0.6 | 0 |
| Training \& Documentation | 1 | 1 | 0 |
| Bus Farebox | 2000 | 1200 | 0 |
| Station Controller | 65 | 35 | 0 |
| Turnstile | 600 | 400 | 0 |
| Ticket Office Machine \& Validator | 100 | 80 | 0 |
| Smart Card | $2,000,000$ | $1,000,000$ | 0 |

Table B-2
Cost Elements, Unit Costs, Full Deployment Size, and National ITS Metropolitan Infrastructure Costs from FHWA Report (Reference 1)

| QUANTITY LARGE | QUANTITY MEDIUM | QUANTITY SMALL | UNIT COST O \& M (\$K) | UNIT COST CAPITOL (\$K) | O \& M COST LARGE (\$K) | CAPITOL LARGE (\$K) | O \& M COST MEDIUM (\$K) | CAPITOL MEDIUM (\$K) | O \& M COST SMALL (\$K) | CAPITOL SMALL (\$K) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 40,000 | 25000 | 1500 | 0.04 | 0.8 | 1600 | 32000 | 1000 | 20000 | 60 | 1200 |
| 650 | 450 | 110 | 1 | 20 | 650 | 13000 | 450 | 9000 | 110 | 2200 |
| 250 | 150 | 0 | 2 | 40 | 500 | 10000 | 300 | 6000 | 0 | 0 |
| 100 | 70 | 40 | 0.2 | 4 | 20 | 400 | 14 | 280 | 8 | 160 |
| 10 | 8 | 0 | 12.5 | 250 | 125 | 2500 | 100 | 2000 | 0 | 0 |
|  |  |  |  |  | 2895 | 57900 | 1864 | 37280 | 178 | 3560 |
| 100 | 75 | 25 | 10 | 200 | 1000 | 20000 | 750 | 15000 | 250 | 5000 |
| 10 | 7 | 2 | 1 | 20 | 10 | 200 | 7 | 140 | 2 | 40 |
| 100 | 80 | 0 | 1 | 20 | 100 | 2000 | 80 | 1600 | 0 | 0 |
| 400 | 300 | 0 | 2 | 40 | 800 | 16000 | 600 | 12000 | 0 | 0 |
| 2500 | 1500 | 50 | 0.25 | 5 | 625 | 12500 | 375 | 7500 | 12.5 | 250 |
|  |  |  |  |  | 2535 | 50700 | 1812 | 36240 | 264.5 | 5290 |
| 1600 | 1200 | 0 | 0.5 | 5 | 800 | 8000 | 600 | 6000 | 0 | 0 |
| 400 | 300 | 50 | 12 | 240 | 4800 | 96000 | 3600 | 72000 | 600 | 12000 |
| 2500 | 1500 | 50 | 0.5 | 10 | 1250 | 25000 | 750 | 15000 | 25 | 500 |
|  |  |  |  |  | 6850 | 129000 | 4950 | 93000 | 625 | 12500 |
| 6 | 4 | 1 |  |  |  |  |  |  |  |  |
| 1 | 0.8 | 0.7 | 34 | 680 | 34 | 680 | 27.2 | 544 | 23.8 | 476 |
| 1 | 1 | 1 | 11 | 220 | 11 | 220 | 11 | 220 | 11 | 220 |
| 1 | 0.8 | 0.7 | 200 | 4000 | 200 | 4000 | 160 | 3200 | 140 | 2800 |
| 36 | 24 | 15 | 50 | 0 | 1800 | 0 | 1200 | 0 | 750 | 0 |
|  |  |  |  |  | 12270 | 29400 | 5592.8 | 15856 | 924.8 | 3496 |
| 1 | 0.8 | 0.7 | 5.1 | 102 | 5.1 | 102 | 4.08 | 81.6 | 3.57 | 71.4 |
| 1 | 1 | 1 | 15 | 300 | 15 | 300 | 15 | 300 | 15 | 300 |
| 1 | 0.8 | 0.7 | 200 | 4000 | 200 | 4000 | 160 | 3200 | 140 | 2800 |
| 200 | 150 | 50 | 10 | 30 | 2000 | 6000 | 1500 | 4500 | 500 | 1500 |
| 30 | 25 | 10 | 50 | 0 | 1500 | 0 | 1250 | 0 | 500 | 0 |
|  |  |  |  |  | 3720.1 | 10402 | 2929.08 | 8081.6 | 1158.6 | 4671.4 |


| 0 | 0 | 00\＆ | OL | 0092 | 0ヶt | $0 \varepsilon 1$ | $L$ | 0 | O1 | 02 | łuәud！̣nbə дəəndmoう ezeld IA甘 <br>  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 091 | OG | 08t | OSt | 91 | ¢ | 0 | O1 | $0 \varepsilon$ |  |
| 0 | 0 | 091 | OG | 08t | OSt | 91 | g | 0 | O1 | $0 \varepsilon$ |  |
| 0 | 0 | ¢ 29 | 089 | G $\angle 81$ | $0 \pm \angle 1$ | G21 | 915 | 0 | g | St |  |
| 0 | 0 | 0¢ع | $0 ヶ$ O | OGO1 | OZL | 02 | 87 | 0 | G | St | （әu® ıәd）I $\wedge \forall$ O！！emoin $\forall$ |
| 0 | 0 | $0 \varepsilon L$ | 0くカ1 | 0612 | OLDt | $\varepsilon \angle$ | くカレ | 0 | O1 | $0 \varepsilon$ |  |
|  |  |  |  |  |  |  |  |  |  |  | S＾S NOI上ОヨาาOכ |
| 08LE | 0 | 0乙\＆t | 0 | 00ts | 0 |  |  |  |  |  | （y\＄）7 |
| 08LE | 0 | 0ことt | 0 | 00ts | 0 | 00ts | 0 | LO | 8.0 | 1 | OW ‘IISNVY ㄷOWヨ ‘OIL ‘OW NOIL甘YפヨコNI 8 NפISヨa SAS |
| 0st | s．zく乙 | 0081 | 06S1 | 0962 | $9 \times$ ¢ |  |  |  |  |  | （y\＄） $7 \forall \perp$ ） |
| 0 | 092 | 0 | OOS 1 | 0 | 0002 | 0 | 09 | G | $0 \varepsilon$ | 0t | pauuos．ad W 8 O |
| $00 \varepsilon$ | St | $00 \varepsilon$ | St | OSt | ¢ $て$ ¢ | $0 \varepsilon$ | $\mathrm{S} \cdot$ | 01 | O1 | St | SWO əqеम०d |
| OS। | G．L | O¢Z | 9＇z1 | 009 | ¢ | 0 S | s＇z | $\varepsilon$ | ¢ | O1 | y $\forall \mathrm{H}$ शqеноd |
| 0 | 0 | 0GZ1 | G＇29 | 0002 | 001 | OG | s＇z | 0 | ¢ | 0t | sө｜ग！${ }^{\text {a }}$＾ |
|  |  |  |  |  |  |  |  |  |  |  |  |
| OS | G．L | OGL |  | 066 | S 67 |  |  |  |  |  | （y\＄）7 |
| OSt | G．L | OGL | $\mathrm{s}<\varepsilon$ | 066 | 9．6t | $\varepsilon 0$ | Sto 0 | 009 | 0092 | 00ع\＆ |  <br>  |
| $860 \varepsilon$ | 6 －+0 \％ | 乙८¢ะ | 9．9く2 | 00tt | $0 \angle \varepsilon$ |  |  |  |  |  | （y\＄）7V |
| 0 | OG | 0 | 001 | 0 | OSt | 0 | OG | 1 | 乙 | $\varepsilon$ | lauuos．ad W 8 O |
| 0082 | 0ヶt | $00 乙 \varepsilon$ | 091 | 000t | 002 | 000t | 002 | $\angle 0$ | 8.0 | 1 |  |
| 09 | $\varepsilon$ | 09 | $\varepsilon$ | 09 | $\varepsilon$ | 09 | $\varepsilon$ | 1 | 1 | 1 | （snoилл）әлемио |
| 8ะ乙 | 6.15 | ZLZ | 9 ¢ $¢$ | 0ヶ¢ | $\angle 1$ | 0ヶ¢ | $\angle 1$ | LO | 8.0 | 1 | әеемрлен 8 siatndmos |
|  |  |  |  |  |  |  |  |  |  |  |  |
| $0 \varepsilon 9$ | $\mathrm{q}^{\circ} \mathrm{L}$ ¢ | 099 2 | 8LE | 00921 | $0 \varepsilon 9$ |  |  |  |  |  | （ $\ \$$ ）7 |
| $0 ¢ 9$ | G．1¢ | 09G 2 | 8LE | 00921 | 0 0¢9 | $\varepsilon 9$ | StE＊0 | 001 | 002t | 0002 |  <br>  |
| 8て1と | ナ902 | 2998 | 1－8L2 | 0\＆tt | G． $1 / 2 \varepsilon$ |  |  |  |  |  | （ $\ \$$ ）7 $\forall$ LOı日 |
| 0 | OG | 0 | OOL | 0 | OSt | 0 | OG | 1 | 乙 | $\varepsilon$ | pauuos．ad W 8 O |
| 0082 | 0ヶt | 00乙\＆ | 091 | 000t | 002 | 000t | 002 | LO | 80 | 1 |  |
| 06 | ¢＇t | 06 | ¢＇t | 06 | c＇t | 06 | c＇t | 1 | 1 | 1 | （snouел）әлемџоS |
| 8๕乙 | 6.15 | ZL乙 | $9 \cdot \varepsilon 1$ | 0ヶを | $\angle 1$ | 0ヤを | $\angle 1$ | L＇0 | 8.0 | 1 | әхемрлен в sıəındmos |
| （ y \＄） | （ Y \＄） | （ Y \＄） | （ Y \＄） | （y\＄） | （ Y \＄） | （ y \＄） | （ Y \＄） |  |  |  |  |
| $77 * W S$ | $77 \% W S$ | WกıagW | WกIaヨW | эฺษヲา | ヨコษヤา | 7Oıld ${ }^{\text {a }}$ | W80 | $77 \% W S$ | WกIaヨW | ヨฺษヤา |  |
| 70ıld ${ }^{\text {a }}$ | 」SOכ W80 | 7O＾ld ${ }^{\text {a }}$ | 」SOכ W80 | רOLld ${ }^{\text {a }}$ | 」SOつ W80 | LSOO LINก | LSOכ LINก | 人LILNVOO | 人llıNVOO | 人LIINVกO | SıNヨพヨาヨ |

Table B-2
Cost Elements, Unit Costs, Full Deployment Size, and National ITS Metropolitan Infrastructure Costs from FHWA Report (Reference 1)


M COST
RGE
$\begin{aligned} & \text { \$K) } \\ & 7310\end{aligned}$
7310
$\begin{array}{ccccc}\text { QUANTITY } & \text { QUANTITY } & \text { QUANTITY } & \text { UNIT COST } & \text { UNIT COST } \\ \text { LARGE } & \text { MEDIUM } & \text { SMALL } & \text { O \& M } & \text { CAPITOL } \\ & & & (\$ K) & (\$ \mathrm{~K})\end{array}$

| QUANTITY | QUANTITY | QUANTITY |
| :---: | :---: | :---: |
| LARGE | MEDIUM | SMALL |

ELEMENTS
(s) (Sk)


$$
\begin{aligned}
& \text { O \& M COST } \\
& \text { MEDIUM } \\
& (\$ K)
\end{aligned}
$$

$$
\hat{N}
$$

$$
\dot{\dot{B}}
$$

$\stackrel{\infty}{\dot{\sim}}$

$$
\begin{aligned}
& \circ \\
& \underset{\sim}{f} \\
&
\end{aligned}
$$

$\stackrel{\circ}{\infty}$
$\stackrel{\sim}{\infty}$

$$
\begin{aligned}
& \stackrel{\sim}{\infty}
\end{aligned}
$$

$$
\underset{\sim}{\infty}
$$



OSt
$\underset{\sim}{\infty}$

## APPENDIX C

DETAILED TABLES OF
CHANGES TO COST ELEMENTS, UNIT COSTS, FULL DEPLOYMENT SIZE, AND NATIONAL ITS METROPOLITAN INFRASTRUCTURE COSTS (AS DESCRIBED IN SECTION 3)

Table C-1: ITS Unit Cost Estimates from Three
Sources: Core Infrastructure, TransCore ITS Planning Handbook, and Mitretek ITS Planning Seattle Case Study

|  |  |  | TransCore |  | Core | Seattle |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Unit |  | O \& M | TransCore | Infrastr. | Infrastr. |
|  | Capital | Source | Cost | O \& M | O\&M | O\&M |
|  | Cost | of | as \% of | Cost | Cost | Cost |
| ELEMENTS | \$1,000 | Estimate | Capitol | \$1,000 | \$1,000 | \$1,000 |
| SURVEILLANCE |  |  |  |  |  |  |
| Point Detection: Loops (1 per approach lane to a signal) | \$0.80 | Core |  |  | 0.04 |  |
| Point Detection: Loops (1 per lane per half mile) | \$0.80 | Core |  |  | 0.04 |  |
| Point Detection: Loops (1 per lane per half mile) | \$1.46 | Seattle |  |  |  | 0.075 |
| Point Detection: Loops (1 per lane per half mile) | \$1.0 | TransCore | 10\% | 0.10 |  |  |
| Point Detection (Overhead)(1 per lane per half mile) | \$2.25 | TransCore | 5\% | 0.11 |  |  |
| Processor ( 170 series), 1 per direction per half mile for point detectors (Cabinet and Foundation) | \$6.25 | TransCore | 5\% | 0.31 |  |  |
| Data Station, 1 per half mile | \$25 | Seattle |  |  |  | 0.5 |
| CCTV Cameras/Site | \$20 | Core |  |  | 1 |  |
| CCTV | \$25 | TransC, Seattle | 10\% | 2.5 |  | 1.3 |
| CCTV Pole and Foundation | \$18 | TransCore | 5\% | 0.9 |  |  |
| Video Image Processing (VIP) /intersection | \$40 | Core | 10\% | 4 | 2 |  |
| Environmental Sensors | \$4 | Core | 5\% | 0.2 | 0.2 |  |
| AVI equip. to identify priority vehicles/intersection | \$40 | TransCore | 10\% | 4 |  |  |
| AVI equip. to identify priority vehicles/intersection | \$25 | Seattle |  |  |  | 1.5 |
| AVL equip to supplement GPS/site | \$250 | TransCore | 10\% | 25 |  |  |
| AVL equip to supplement GPS/site | \$300 | Seattle |  |  |  | 6 |
|  |  |  |  |  |  |  |
| COMMUNICATION |  |  |  |  |  |  |
| Fiber-Optic Cable/mile | \$240 | Core |  |  | 12 |  |
| Fiber-Optic Cable/mile | \$290 | Seattle |  |  |  | 0.8 |
| Fiber-Optic Hub (Interchange) (1 per 5 miles of fiber) | \$110 | Seattle |  |  |  | 8 |
| Wireless Radio | \$15 | TransCore |  |  |  |  |
| Twisted-pair to Signals (per intersection) | \$10 | Core |  |  | 0.50 |  |
| Twisted-pair to Signals (per intersection) | \$19.4 | Seattle |  |  |  |  |
| Leased lines to signals | .04/month | TransCore | 0\% | 0 |  |  |
| Leased lines to roadside video | . $30 / \mathrm{month}$ | TransCore | 0\% | 0 |  |  |
|  |  |  |  |  |  |  |
| TRAFFIC SIGNAL CONTROL |  |  |  |  |  |  |
| Central Computer System (distributed) | \$30 | TransCore |  |  |  |  |
| Central Computer System (closed loop) | \$10 | TransCore |  |  |  |  |
| Coordinated/Adaptive System (Local Controller)) | \$17.5 | Seattle |  |  |  | 0.5 |
| Coordinated/Adaptive Master (1 per 20-25 Locals) | \$10 | Seattle |  |  |  | 0.5 |
| Signal Controller Upgrade | \$5 | Core |  |  | 0.25 |  |
| Emergency Vehicle Preemption | \$2.0 | TransCore |  |  |  |  |
| Transit Vehicle Preemption | \$2.0 | TransCore |  |  |  |  |
| Railroad Preemption | \$0.5 | TransCore |  |  |  |  |
|  |  |  |  |  |  |  |
| FREEWAY MANAGEMENT |  |  |  |  |  |  |
| Ramp Meter System (per interchange) | \$40 | Core | 10\% | 4 | 2 |  |
| Ramp Meter System (per interchange) | \$30 | Seattle |  |  |  | 3 |
| HOV lane control \& monitoring equipment | \$250 | Core | 10\% | 25 | 12.5 |  |
|  |  |  |  |  |  |  |
| TRANSPORTATION MANAGEMENT CENTER |  |  |  |  |  |  |
| Computers \& Hardware |  |  |  |  |  |  |
| Large Area (>750,000 population) | \$680 | Core | 15\% | 102 | 34 |  |
| Medium Area (250,000-750,000 population) | \$544 | Core | 15\% | 81.6 | 27.2 |  |
| Small Area (<250,000 population) | \$476 | Core | 15\% | 71.4 | 23.8 |  |
| Computers \& Hardware (per work station) | \$185 | Seattle |  |  |  | 170 |
| Software (various) | \$220 | Core |  |  | 11 |  |
| Software (various) | \$225 | Seattle |  |  |  | 34 |
| Central Dispatch/Tracking Software (Incident Mgmt.) | \$600 | Seattle |  |  |  | 30 |
|  |  |  |  |  |  |  |
| Large Area (>750,000 population) | \$4,000 | Core | 15\% | 600 | 200 |  |
| Medium Area (250,000-750,000 population) | \$3,200 | Core | 15\% | 480 | 160 |  |

Table C-1: ITS Unit Cost Estimates from Three
Sources: Core Infrastructure, TransCore ITS Planning Handbook, and Mitretek ITS Planning Seattle Case Study

|  |  |  | TransCore |  | Core | Seattle |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Unit |  | O \& M | TransCore | Infrastr. | Infrastr. |
|  | Capital | Source | Cost | O \& M | O\&M | O\&M |
|  | Cost | of | as \% of | Cost | Cost | Cost |
| ELEMENTS | \$1,000 | Estimate | Capitol | \$1,000 | \$1,000 | \$1,000 |
| Small Area (<250,000 population) | \$2,800 | Core | 15\% | 420 | 140 |  |
| O \& M Personnel |  | Core |  |  | 50 |  |
|  |  |  |  |  |  |  |
| TRAVELER INFORMATION CENTERS |  |  |  |  |  |  |
| Computers and Hardware |  |  |  |  |  |  |
| Large Area (>750,000 population) | \$102 | Core | 15\% | 15.3 | 5.1 |  |
| Medium Area (250,000-750,000 population) | \$81.6 | Core | 15\% | 12.24 | 4.1 |  |
| Small Area (<250,000 population) | \$71.4 | Core | 15\% | 10.71 | 3.1 |  |
| Software (various) | \$300 | Core |  |  | 15 |  |
|  |  |  |  |  |  |  |
| Large Area ( $>750,000$ population) | \$4,000 | Core | 15\% | 600 | 200 |  |
| Medium Area (250,000-750,000 population) | \$3,200 | Core | 15\% | 480 |  |  |
| Small Area (<250,000 population) | \$2,800 | Core | 15\% | 420 |  |  |
| O \& M Personnel |  | Core |  |  | 50 |  |
|  |  |  |  |  |  |  |
| ROADSIDE/SITE TRAVELER INFORMATION |  |  |  |  |  |  |
| Fixed VMS \& Controllers with structure | \$200 | Core |  |  | 10 |  |
| Full Matrix VMS with Controllers \& overhead structure | \$125 | Seattle |  |  |  | 4 |
| Full Matrix VMS \& Controllers (without structure) | \$80 | TransCore | 5\% | 4 |  |  |
| Mid Range Fixed VMS \& Controllers (without structure) | \$60 | TransCore | 5\% | 3 |  |  |
| Cantilever Mounting Structure | \$75 | TransCore | 5\% | 3.75 |  |  |
| Overhead Structure (6 lanes each way) | \$120 | TransCore | 5\% | 6 |  |  |
| Overhead Structure (4 lanes each way) | \$100 | TransCore | 5\% | 5 |  |  |
| Hybrid VMS with structure (Arterials) | \$20 | Core |  |  | 1 |  |
| Fixed HAR \& Controllers | \$20 | Core, Seattle | 10\% | 2 | 1 | 1 |
| Kiosks | \$30 | Core |  |  | 10 |  |
| Kiosks | \$15 | TransCore | 10\% | 1.5 |  |  |
| Kiosks | \$18 | Seattle |  |  |  | 5 |
| Callboxes (Traveler Advisory Telephone) | \$5 | Core |  |  | 0.50 |  |
|  |  |  |  |  |  |  |
| INCIDENT MANAGEMENT EQUIPMENT |  |  |  |  |  |  |
| Portable VMS | \$30 | Core |  |  | 1.5 |  |
| Portable VMS | \$50 | TransCore | 5\% | 2.5 |  |  |
| Portable HAR | \$50 | Core |  |  | 2.5 |  |
| Portable HAR | \$40 | TransCore | 10\% | 4 |  |  |
| Special Pickup Trucks | \$50 | Core |  |  | 2.5 |  |
| In-Vehicle Dynamic Route Guidance per vehicle | \$4 | Seattle |  |  |  | \$0.4 |
| O \& M Personnel |  | Core |  |  | 50 |  |
|  |  |  |  |  |  |  |
| EMERGENCY MANAGEMENT CENTERS |  |  |  |  |  |  |
| Computers \& Hardware |  |  |  |  |  |  |
| Large Area (>750,000 population) | \$340 | Core | 15\% | \$51 | 17 |  |
| Medium Area (250,000-750,000 population) | \$272 | Core | 15\% | \$41 | 13.6 |  |
| Small Area (<250,000 population) | \$238 | Core | 15\% | \$36 | 11.9 |  |
| Software (various) | \$60 | Core |  |  | 3 |  |
| Facilities \& Communications |  |  |  |  |  |  |
| Large Area (>750,000 population) | \$4,000 | Core | 15\% | \$600 | 200 |  |
| Medium Area (250,000-750,000 population) | \$3,200 | Core | 15\% | \$480 | 160 |  |
| Small Area (<250,000 population) | \$2,800 | Core | 15\% | \$420 | 140 |  |
| O \& M Personnel |  | Core |  |  | 50 |  |
|  |  |  |  |  |  |  |
| EMERGENCY VEHICLE SERVICES |  |  |  |  |  |  |
| Cellular radio, Communications /vehicle | \$0.30 | Core | 10\% |  | 0.02 |  |
|  |  |  |  |  |  |  |
| TRANSIT MANAGEMENT CENTER |  |  |  |  |  |  |
| Computers \& Hardware |  |  |  |  |  |  |

Table C-1: ITS Unit Cost Estimates from Three
Sources: Core Infrastructure, TransCore ITS Planning Handbook, and Mitretek ITS Planning Seattle Case Study

|  |  |  | TransCore |  | Core | Seattle |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Unit |  | O \& M | TransCore | Infrastr. | Infrastr. |
|  | Capital | Source | Cost | O \& M | O\&M | O\&M |
|  | Cost | of | as \% of | Cost | Cost | Cost |
| ELEMENTS | \$1,000 | Estimate | Capitol | \$1,000 | \$1,000 | \$1,000 |
| Large Area (>750,000 population) | \$340 | Core | 15\% | 51 | 17 |  |
| Medium Area (250,000-750,000 population) | \$272 | Core | 15\% | 40.8 | 13.6 |  |
| Small Area (<250,000 population) | \$238 | Core | 15\% | 35.7 | 11.9 |  |
| Computers \& Hardware for AVL System | \$300 | Seattle |  |  |  | 45 |
| Software (various) | \$90 | Core |  |  | 4.5 |  |
| Software (various) | \$150 | Seattle |  |  |  | 3 |
| Facilities \& Communication |  |  |  |  |  |  |
| Large Area (>750,000 population) | \$4,000 | Core | 15\% | 600 | 200 |  |
| Medium Area (250,000-750,000 population) | \$3,200 | Core | 15\% | 480 | 160 |  |
| Small Area (<250,000 population) | \$2,800 | Core | 15\% | 420 | 140 |  |
| Facilities \& Communication | \$500 | Seattle |  |  |  | 75 |
| O \& M Personnel |  | Core |  |  | 50 |  |
|  |  |  |  |  |  |  |
| TRANSIT VEHICLE INTERFACES |  |  |  |  |  |  |
| In-vehicle Cellular Radio unit per vehicle | \$6.3 | Core | 10\% | 0.63 | 0.32 |  |
| Transponder for AVI per vehicle | \$0.6 | Seattle |  |  |  | 0.01 |
| In-Vehicle AVL Equipment per vehicle | \$9.0 | Seattle |  |  |  | 1.5 |
|  |  |  |  |  |  |  |
| ELECTRONIC FARE PAYMENT |  |  |  |  |  |  |
| Central Computer System | \$3,000 | Core |  |  | 150 |  |
| Ticket Vending Machines | \$60 | Core |  |  | 3 |  |
| Training \& Documentation | \$80 | Core |  |  | 4 |  |
| Bus Farebox | \$7 | Core |  |  | 0.35 |  |
| Station Controller | \$20 | Core |  |  | 1 |  |
| Turnstile | \$27.5 | Core |  |  | 1.38 |  |
| Ticket Office Machine \& Validator | \$24.4 | Core |  |  | 1.22 |  |
| Smart Cards | \$0.01 | Core |  |  | 0 |  |
|  |  |  |  |  |  |  |
| ELECTRONIC TOLL COLLECTION |  |  |  |  |  |  |
| Manual AVI (per lane) | \$73 | Core |  |  | 147 |  |
| Automatic AVI (per lane) | \$70 | Core |  |  | 48 |  |
| Manual Automatic AVI (per lane) | \$125 | Core |  |  | 116 |  |
| AVI Dedicated (per lane) | \$16 | Core |  |  | 5 |  |
| Express AVI (per lane) | \$16 | Core |  |  | 5 |  |
| AVI Plaza Computer equipment | \$130 | Core |  |  | 7 |  |
|  |  |  |  |  |  |  |
| SYSTEM DESIGN \& INTEGRATION |  |  |  |  |  |  |
| Metro Total: TMC, TIC, EMC, Transit MC |  |  |  |  |  |  |
| Large Area (>750,000 population) | \$5,400 | Core |  |  |  |  |
| Medium Area (250,000-750,000 population) | \$4,300 | Core |  |  |  |  |
| Small Area (<250,000 population) | \$3,800 | Core |  |  |  |  |
| Electronic Fare Payment System | \$16,000 | Core |  |  | 0 |  |
| System Engr. Program Mgmt, Installation |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
| TRAVELER SERVICES |  |  |  |  |  |  |
| Smart Card (Electronic Fare Payment) | \$0.01 | Core | 0\% | 0 | 0 |  |
| Pre-Trip Planning Service per subscription | \$0 | Seattle |  |  |  | 0.12 |
| Personal Dynamic Route Guidance per subscription | \$0.80 | Seattle |  |  |  | 0.12 |


|  |  |  |  |  |  | 乙 | 09 | 001 | g 0 | Or |  <br>  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  | $\mathrm{s} \cdot \mathrm{t}$ | $0 \varepsilon$ |  |
|  |  |  |  |  |  |  |  |  | s＇0 | 01 |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
| £99\＄ | O¢ح＇と।\＄ | S $\angle 6$＇¢\＄ | 009＇6 ${ }^{\text {c }}$ \＄ | 008＇$¢ \$$ | 000＇901\＄ |  |  |  |  |  | （Y\＄）7V1Oı日 |
|  |  |  |  |  |  |  |  |  | $9 \cdot \varepsilon$ | 0 | ［MヨN］оәp！＾이 әu！！pəseəา |
|  |  |  |  |  |  |  |  |  | 8 | OLt |  |
| s＇299 | 0¢乙\＆เ | ¢ $\angle 6 \varepsilon$ | 009＇62 | 00\＆s | 000＇901 | OG | $00 \varepsilon$ | 00t | ¢で\＆เ | ¢92 |  |
|  |  |  |  |  |  |  |  |  |  |  | SイVMヨヨy－NOILVOINกWWOo |
| 88\＄ | OG $\angle \$$ | Sて1＇し\＄ | 009＇ટ2\＄ | S $\angle 8^{\prime} 1 . \$$ | $009^{\prime} \angle \varepsilon \$$ |  |  |  |  |  | （Y\＄）7－1Oı日 |
|  |  |  |  |  |  |  |  |  | $9 \cdot \varepsilon$ | 0 | ［MᄏN］оәр！＾оұ әu！！pəseəา |
|  |  |  |  |  |  |  |  |  | $85^{\circ}$ | 0 | ［MヨN］sıeu6¢！s of әu！｜peseə |
|  |  |  |  |  |  |  |  |  | ¿ | ¢ |  |
| $9 \times \varepsilon$ | OGL | ¢ 21 | 009＇乙乙 | ¢ $\angle 81$ | $009^{\prime} \angle \varepsilon$ | OS | 00st | 00¢2 | s $\iota^{\circ} 0$ | St |  |
|  |  |  |  |  |  |  |  |  |  |  | STVIપ̧ヨly－NOILVOINกWWOO |
| 811\＄ | 0LL＇เ\＄ | £ $<$ ¢\＄ | Otぐト1\＄ | 191＇1\＄ | Ottくで |  |  |  |  |  | （x\＄）7＊1Oı日กs |
| $\dagger$ | 08 | カt | 082 | 02 | 00t | 02 | 02 | 001 | で0 | $\dagger$ |  |
|  |  |  |  |  |  | 09 | $00 \varepsilon$ | 00t | 60 | 81 | ［MヨN］uollepunot pue əood $\wedge \perp$ ） |
| ¢8 | 0921 | Ors | 00G $\angle$ | 089 | 000＇01 | 0 S | $00 \varepsilon$ | 00t | L＇t | ¢ |  |
|  |  |  |  |  |  | 001 | 009 | 008 | 09．0 | 00＇sz |  |
|  |  |  |  |  |  | 0 | 0 | 0 | 1.0 | 9でて |  |
| 8.82 | Ott | 2＇692 | $096 \varepsilon$ | 8．09t | 0702 | 00t | 009 ¢ | 00t＇9 | 10.0 | O1．1 |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
| 181\＄ | 01く「て\＄ | 9ヶでて\＄ | 06て＇£๕\＄ | ャ69＇¢\＄ | 0 して＇¢¢\＄ |  |  |  |  |  | （x\＄）7＊1Oı日กs |
|  |  |  |  |  |  | 0 | 0 | $\varepsilon$ | ¢．91 | 9 $\angle 乙$ |  |
|  |  |  |  |  |  | OG | 0091 | 0092 | $9{ }^{\circ}$ | \＆ع |  |
| 0 | 0 | 0st | 0009 | OGL | 000＇01 | 0 | OSt | O¢乙 | $\varepsilon$ | $0{ }_{0}$ |  |
|  |  |  |  |  |  | 09 | OSt | O¢乙 | 6.0 | 81 | ［ $M \exists N$ ］uo！！epunot pue əod $\wedge \perp$ ） |
| 201 | 00st | ¢¢ | OG $\angle \varepsilon$ | ¢くっ | 0929 | 09 | Ost | 0¢z | L＇1 | 92 |  |
|  |  |  |  |  |  | 002 | 000 ＇t | $000 \cdot 01$ | 180 | ¢て＇9 |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  | 0 | 0 | 0 | 120 | ¢て＇て |  |
| て＇\＆ | 099 | 8 809t | 0t02 | て692 | 0968 | 009 | 00t＇9 | 009 ¢ | 10.0 | O1．1 |  |
| $9 \varepsilon$ | OGG | 0801 | 00991 | 0912 | $000 \times \varepsilon$ | 009 | 000＇st | $000 \times 8$ | L00 | 01\％ |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
| （ $\times$ \＄） | （ $\mathrm{Y}^{\text {\＄}}$ ） | （ \＄$^{\text {\＄}}$ ） | （ \＄$^{\text {\＄}}$ | （ \＄$^{\text {\＄}}$ ） | （ \＄$^{\text {\＄}}$ ） |  |  |  | （ $\mathbf{Y}^{\text {\＄}}$ ） | （ $\times$ \＄） |  |
| 77 ¢Ws | $77 * W$ S | wกıaヨw | wกıaョw | эฺษヤา | эฺบヤา | 7רWW | Wกıaヨw | эฺษヤา | W80 | 701ldvo |  |
| ıSOOW80 | 701ld ${ }^{\text {a }}$ | 」soow 80 | 701ld ${ }^{\text {a }}$ | 1SOOW80 | רOLld ${ }^{\text {a }}$ | 人LIINGOO | 人llinvoo | 人LIINYOO | 」SOכ 」INก | ıSOO | SıNヨWヨาヨ |
|  |  |  | juo＇sıso | ł！un рәıер | dn uo pə | eg stso | əınıonıı | ¢ıu｜uet！｜o | doıəəW S | ll ןuoḷen | $d \cap$ |


| ＋iく | がレく | 91．8 | 9． 18 | 2＇01 | 201 | \％0＜ | \％08 | \％001 | 2＇01 | 201 | әхемрхен рие sıəдndmos |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |
| 001＇1\＄ | $966^{\prime}$＇¢\＄ | 988＇9\＄ | 998＇¢ı\＄ | Otく＇EL\＄ | 00ヵ「62\＄ |  |  |  |  |  | （y\＄）7－1Oıans |
| OGL | 0 | 002t | 0 | 0081 | 0 | St | ャて | $9 \varepsilon$ | OS | 0 |  |
| 082 | 0082 | 0乙\＆ | 00乙を | 00t | 000t | \％0L | \％08 | \％001 | 00t | 000t |  |
| 乙 | 0 Oz | 乙 | 0zz | 乙乙 | 0 Oz | 1 | 1 | 1 | 乙 | 0zz | ОWL／（sпоиел）әлемноS |
| $9 \cdot \downarrow$ | 9＜t | カナ¢ | $t$ ts | 89 | 089 | \％0＜ | \％08 | \％001 | 89 | 089 |  <br>  <br>  |
|  |  |  |  |  |  | 0 | 1 | 1 | $0 \varepsilon$ | 009 |  <br>  |
|  |  |  |  |  |  | 1 | $\downarrow$ | 9 |  |  |  |
| 08z\＄ | ¢८¢\＄ | 299＇1\＄ | ¢ $\angle 88^{\prime} 1 \$$ | £9て＇乙\＄ | O¢O＇¢\＄ |  |  |  |  |  | （y\＄）7 |
| O¢又 | 0 | 00st | 0 | 0002 | 0 | g | $0 \varepsilon$ | 0t | OS | 0 |  |
| 0 | 0 | Sくı | OGz1 | 002 | 0002 | 0 | ¢ | Ot | s | OG |  |
| 6.6 | ¢\＆ | ¢．91 | ¢८z | £ | 0st | $\varepsilon$ | 9 | 01 | $\varepsilon \varepsilon$ | st |  |
| 02 | 00t | 02 | 00t | 0 | 009 | O1 | O1 | st | 乙 | 0t |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
| 06ヶ\＄ | S9t＇S\＄ | 0st＇z\＄ | S10＇tz\＄ | 098＇z\＄ | 006‘ 1 ¢ ${ }^{\text {¢ }}$ |  |  |  |  |  |  |
| G $\angle 2$ | OSOL | 0 ¢¢ ¢ | 0918 | 0011 | 002ヵ | 09 | Ost | 002 | g s | 12 | sysoly |
| 0 | 0 | 009 | 0009 | 008 | 0008 | 0 | 0021 | 0091 | so | s |  |
| 2 | $0{ }_{0}$ | $\angle$ | 0 t | O1 | 002 | 乙 | L | 01 | 1 | 02 |  |
| 0 | 0 | 08 | 0091 | 001 | 0002 | 0 | 08 | 001 | 1 | 02 |  |
| GZ1 | ¢ 292 | GLE | GL8L | 009 | 009＇0 | G2 | GL | 001 | G | ¢01． |  ヨIS／ヨaISavoy © NOI\＆ |
| $9<8$ | Og 21 | g＇292 | O¢zs | 0¢8 | $000<$ | 92 | SL | 001 | s＇$¢$ | 02 |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
| 0\＄ | 0\＄ | 00て＇1 | 009＇く1\＄ | 889＇1\＄ | 009‘91\＄ |  |  |  |  |  |  |
| 0 | 0 | OSOL | 00SO1 | 00tr | 000＇カー | 0 | 008 | 00t | ¢＇¢ | ¢ $¢$ |  |
| 0 | 0 | ヶ－OG | 0002 | 881 | 00¢2 | 0 | 8 | 01 | 8.81 | OSZ |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
| $\varepsilon 1 \$$ | 0¢ ${ }^{\text {S }}$ | ¢ $¢ \ell \$$ | 009＇$\angle \$$ | ¢ $29 \$$ | 009＇く1\＄ |  |  |  |  |  |  |
| 0 | 0 | 0 | 0 |  |  | 0 | 0 | ¢२। | ＋0 | 2 |  |
| s．zt | O¢z | G $¢ \varepsilon$ | 00G $\angle$ | ¢ 29 | 009＇z1 | 0 S | 009 | 0092 | Sて＇0 | G |  <br>  |
|  |  |  |  |  |  |  |  |  | 6.0 | $9<1$ |  |
| （ $\mathbf{x}^{\text {\＄}}$ ） | （ $\chi^{\$}$ ） | （ \＄$^{\text {\＄}}$ ） | （ $\mathbf{Y}^{\text {\＄}}$ ） | （ \＄$^{\text {\＄}}$ ） | （ \＄$^{\text {\＄}}$ ） |  |  |  | （ \＄$^{\text {\％}}$ | （ \＄$^{\text {\％}}$ |  |
| 7 7\％Ws | 7ד＊Ws | wniagw | wกıaヨw | ョฺบษา | ョฺษษา | 77 \％Ws | Wกıaヨw | эฺษษา | W80 | 701ld |  |
| LSOOW80 | 70ıldyo | 1s00w80 | 70ıld ${ }^{\text {a }}$ | 」soow8o | רOLldVo | 人LIINGOO | 人LIINVOO | 人IIINVOO | 」SOכ $\operatorname{IIN}$ ก | ıSOO $\operatorname{IIN}$ ก | S」NヨWヨาヨ |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

Table C-2


Updated National ITS Metropolitan Infrastructure Costs Based on Updated Cost Elements and Unit Costs

| UNIT COST CAPITOL (\$K) | UNIT COST O \& M (\$K) | QUANTITY LARGE | QUANTITY MEDIUM | QUANTITY SMALL | CAPITOL LARGE (\$K) | O \& M COST LARGE (\$K) | CAPITOL MEDIUM (\$K) | O \& M COST MEDIUM (\$K) | CAPITOL SMALL (\$K) | $\begin{gathered} \text { O \& M COST } \\ \text { SMALL } \\ (\$ K) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1.10 | 0.07 | 30,000 | 15,000 | 500 | 33,000 | 2160 | 16500 | 1080 | 550 | 36 |
| 1.10 | 0.07 | 3,600 | 6,400 | 600 | 3960 | 259 | 7040 | 461 | 660 | 43 |
| 2.25 | 0.11 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 6.25 | 0.31 | 10,000 | 4,000 | 200 | 62500 | 3125 | 25000 | 1250 | 1250 | 62.5 |
| 25 | 1.7 | 250 | 150 | 60 | 6250 | 425 | 3750 | 255 | 1500 | 102 |
| 18 | 0.9 | 250 | 150 | 60 | 4500 | 225 | 2700 | 135 | 1080 | 54 |
| 40 | 3 | 250 | 150 | 0 | 10,000 | 750 | 6000 | 450 | 0 | 0 |
| 33 | 2.6 | 2500 | 1500 | 50 | 82500 | 6600 | 49500 | 3960 | 1650 | 132 |
| 275 | 16.5 | 3 | 0 | 0 | 825 | 49.5 | 0 | 0 | 0 | 0 |
|  |  |  |  |  | \$203,535 | \$13,594 | \$110,490 | \$7,591 | \$6,690 | \$430 |
| 1.10 | 0.07 | 6,400 | 3,600 | 400 | 7040 | 461 | 3960 | 259 | 440 | 29 |
| 2.25 | 0.11 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 25.00 | 0.50 | 800 | 600 | 100 | 20000 | 400 | 15000 | 300 | 2500 | 50 |
| 25 | 1.7 | 400 | 300 | 50 | 10,000 | 680 | 7500 | 510 | 1250 | 85 |
| 18 | 0.9 | 400 | 300 | 50 | 7,200 | 360 | 5400 | 270 | 900 | 45 |
| 4 | 0.2 | 100 | 70 | 20 | 400 | 20 | 280 | 14 | 80 | 4.0 |
|  |  |  |  |  | \$44,640 | \$1,921 | \$32,140 | \$1,353 | \$5,170 | \$213 |
| 15 | 0.75 | 2500 | 1500 | 50 | 37,500 | 1875 | 22,500 | 1125 | 750 | 37.5 |
| 15 | ? | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0.48 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 3.6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  |  |  |  |  | \$37,500 | \$1,875 | \$22,500 | \$1,125 | \$750 | \$38 |
| 265 | 13.25 | 400 | 300 | 50 | 106,000 | 5300 | 79,500 | 3975 | 13250 | 662.5 |
| 110 | 8 | 0 | 0 | 0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 |
| 0 | 3.6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  |  |  |  |  | \$106,000 | \$5,300 | \$79,500 | \$3,975 | \$13,250 | \$663 |
| 10 | 0.5 | 0 | 0 | 0 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 |
| 30 | 1.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 10 | 0.5 | 100 | 60 | 2 | 1,000 | 50 | 600 | 30 | 20 | 1.0 |


|  | $0 \underset{\sim}{\circ}$ | $\bigcirc$ | $\underset{\underset{\infty}{*}}{\underset{\sim}{2}}$ | $\bigcirc 0$ | $\bigcirc$ | $\stackrel{\sim}{\infty} \underset{\sim}{N} \circ \stackrel{0}{\sim} \circ \stackrel{N}{N}$ | $\begin{aligned} & \text { ৪ } \\ & \text { + } \end{aligned}$ | 잉이N | $\stackrel{\stackrel{\sim}{\infty}}{\underset{\sim}{\infty}}$ | $\bigcirc \underset{\sim}{\circ} \underset{\sim}{\sim} \underset{\sim}{\infty} \underset{\sim}{\circ}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | - 이N | - | $\begin{aligned} & \text { O} \\ & \underset{\sim}{\circ} \end{aligned}$ | $\bigcirc 0$ | ¢ |  | $$ | ¢ ¢ ¢ ¢ ¢ |  |  |



| ELEMENTS | UNIT COST CAPITOL (\$K) | $\begin{aligned} & \text { UNIT COST } \\ & \text { O \& M } \\ & (\$ K) \end{aligned}$ | QUANTITY LARGE | QUANTITY MEDIUM | QUANTITY SMALL | CAPITOL LARGE (\$K) | O \& MCOST LARGE (\$K) | CAPITOL MEDIUM (\$K) | O \& MCOST MEDIUM (\$K) | CAPITOL SMALL (\$K) | O \& M COST SMALL (\$K) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Computers and Hardware | 102 | 10.2 | 100\% | 80\% | 70\% | 102 | 10.2 | 81.6 | 8.16 | 71.4 | 7.14 |
| Software (various) | 300 | 15 | 1 | 1 | 1 | 300 | 15 | 300 | 15 | 300 | 15 |
| Facilities \& Communication (stand-alone) | 4000 | 400 | 100\% | 80\% | 70\% | 4000 | 400 | 3200 | 320 | 2800 | 280 |
| O \& M Personnel | 0 | 50 | 30 | 25 | 10 | 0 | 1500 | 0 | 1250 | 0 | 500 |
| SUBTOTAL (\$K) |  |  |  |  |  | 4,402 | 1,925 | 3,582 | 1,593 | 3,171 | 802 |
| EMERGENCY RESPONSE CENTER |  |  |  |  |  |  |  |  |  |  |  |
| Computers \& Hardware | 400 | 20 | 100\% | 80\% | 70\% | 400 | 20 | 320 | 16 | 280 | 14 |
| Software (various) | 70 | 3.5 | 1 | 1 | 1 | 70 | 3.5 | 70 | 3.5 | 70 | 3.5 |
| Facilities \& Communications (stand-alone) | 4000 | 400 | 1 | 0.8 | 0.7 | 4000 | 400 | 3200 | 320 | 2800 | 280 |
| O \& M Personnel | 0 | 50 | 3 | 2 | 1 | 0 | 150 | 0 | 100 | 0 | 50 |
| SUBTOTAL (\$K) |  |  |  |  |  | \$4,470 | \$574 | \$3,590 | \$440 | \$3,150 | \$348 |
| EMERGENCY SERVICES EQUIPMENT |  |  |  |  |  |  |  |  |  |  |  |
| Cellular radio, comm. services per vehicle | 0.3 | 0.02 | 3300 | 2500 | 500 | 990 | 49.5 | 750 | 37.5 | 150 | 7.5 |
| SUBTOTAL (\$K) |  |  |  |  |  | \$990 | \$50 | \$750 | \$38 | \$150 | \$8 |
| TRANSIT MANAGEMENT CENTER |  |  |  |  |  |  |  |  |  |  |  |
| Computers \& Hardware | 340 | 51 | 100\% | 80\% | 70\% | 340 | 51 | 272 | 40.8 | 238 | 35.7 |
| Software (various) | 120 | 6 | 1 | 1 | 1 | 120 | 6 | 120 | 6 | 120 | 6.0 |
| Facilities \& Communication (stand-alone) | 4000 | 400 | 100\% | 80\% | 70\% | 4000 | 400 | 3200 | 320 | 2800 | 280 |
| O \& M Personnel | 0 | 50 | 3 | 2 | 1 | 0 | 150 | 0 | 100 | 0 | 50 |
| SUBTOTAL (\$K) |  |  |  |  |  | 4460 | 607 | 3592 | 466.8 | 3158 | 371.7 |
| TRANSIT VEHICLE INTERFACES |  |  |  |  |  |  |  |  |  |  |  |
| Cellular radio, display, etc per vehicle | 6.3 | 0.47 | 2000 | 1200 | 100 | 12,600 | 946 | 7560 | 567.6 | 630 | 47.3 |
| AVI Transponder (on Signal Priority routes) [NEW] | 0.60 | 0.01 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| In -vehicle AVL equip. per vehicle [NEW] | 9 | 1.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| SUBTOTAL (\$K) |  |  |  |  |  | \$12,600 | \$946 | \$7,560 | \$568 | \$630 | \$47 |
| ELECTRONIC FARE PAYMENT SYS $\qquad$ |  |  |  |  |  |  |  |  |  |  |  |
| Central Computer System | 3000 | 150 | 1 | 1 | 0 | 3000 | 150 | 3000 | 150 | 0 | 0 |
| Training \& Documentation | 80 | 4 | 1 | 1 | 0 | 80 | 4 | 80 | 4 | 0 | 0 |
| At ticketing site |  |  |  |  |  |  |  |  |  |  |  |
| Station Controller [DELETE] | 20 | 1 | 65 | 35 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Ticket Office Machine \& Validator | 24.4 | 1.22 | 100 | 80 | 0 | 2440 | 122 | 1952 | 97.6 | 0 | 0 |


| Table C-3Updated National ITS Metropolitan Infrastructure Costs Based on Updated Cost Elements and Unit Cos |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ELEMENTS | UNIT COST CAPITOL (\$K) | $\begin{gathered} \text { UNIT COST } \\ \text { O \& M } \\ (\$ K) \end{gathered}$ | QUANTITY <br> LARGE | QUANTITY <br> MEDIUM | QUANTITY SMALL | CAPITOL LARGE (\$K) | O \& M COST LARGE (\$K) | CAPITOL MEDIUM (\$K) | O \& M COST MEDIUM (\$K) | CAPITOL SMALL (\$K) | O \& M COST SMALL (\$K) |
| Ticket Vending Machines | 60 | 3 | 500 | 300 | 0 | 30,000 | 1500 | 18000 | 900 | 0 | 0 |
| Turnstile [DELETE] On Transit Vehicles | 27.5 | 1.375 | 600 | 400 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Bus Farebox | 7 | 0.35 | 2000 | 1200 | 0 | 14,000 | 700 | 8400 | 420 | 0 | 0 |
| Smart Card | 0.003 | 0 | 2,000,000 | 1,000,000 | 0 | 6,000 | 0 | 3000 | 0 | 0 | 0 |
| Sys Engineering. Etc. [MOVED] |  |  |  |  |  |  |  |  |  |  |  |
| SUBTOTAL (\$K) |  |  |  |  |  | \$55,520 | \$2,476 | \$34,432 | \$1,572 | \$0 | \$0 |
| ELECTRONIC TOLL COLLECTION SYS |  |  |  |  |  |  |  |  |  |  |  |
| AVI Plaza Computer equipment | 130 | 7 | 20 | 10 | 0 | 2600 | 140 | 1300 | 70 | 0 | 0 |
| Manual AVI (per lane) | 73 | 147 | 30 | 10 | 0 | 2190 | 4410 | 730 | 1470 | 0 | 0 |
| Automatic AVI (per lane) | 70 | 48 | 15 | 5 | 0 | 1050 | 720 | 350 | 240 | 0 | 0 |
| Manual Automatic AVI (per lane) | 125 | 116 | 15 | 5 | 0 | 1875 | 1740 | 625 | 580 | 0 | 0 |
| AVI Dedicated (per lane) | 16 | 5 | 30 | 10 | 0 | 480 | 150 | 160 | 50 | 0 | 0 |
| Express AVI (per lane) | 16 | 5 | 30 | 10 | 0 | 480 | 150 | 160 | 50 | 0 | 0 |
| SUBTOTAL (\$K) |  |  |  |  |  | \$8,675 | \$7,310 | \$3,325 | \$2,460 | \$0 | \$0 |
| SYS DESIGN \& INTEGRATION |  |  |  |  |  |  |  |  |  |  |  |
| TMC, TIC, EMC, Transit MC | 5400 | 0 | 100\% | 80\% | 70\% | 5400 | 0 | 4320 | 0 | 3780 | 0 |
| Electronic Fare Payment Sys | 5400 | 0 | 100\% | 60\% | 0\% | 5400 | 0 | 3240 | 0 | 0 | 0 |
| SUBTOTAL (\$K) |  |  |  |  |  | \$10,800 | \$0 | \$7,560 | \$0 | \$3,780 | \$0 |
| TOTAL PER METRO AREA |  |  |  |  |  | \$588,792 | \$57,745 | \$371,967 | \$33,012 | \$49,665 | \$4,801 |
| NUMBER OF LARGE METRO AREAS |  |  | 75 |  |  |  |  |  |  |  |  |
| NUMBER OF MEDIUM METRO AREAS |  |  |  | 125 |  |  |  |  |  |  |  |
| NUMBER OF SMALL METRO AREAS |  |  |  |  | 200 |  |  |  |  |  |  |
| NATIONAL TOTALS FOR EACH SIZE CLASS |  |  |  |  |  |  |  |  |  |  |  |
| CAPITAL COSTS (\$B) |  |  |  |  |  | \$44.2 |  | \$46.5 |  | \$9.9 |  |
| ANNUAL O\&M COSTS (\$B) |  |  |  |  |  |  | \$4.33 |  | \$4.13 |  | \$0.96 |
| NATIONAL TOTALS |  |  | CAPITAL COSTS (\$B) |  |  | \$100.6 |  |  |  |  |  |
|  |  |  | ANNUAL O8 | M COSTS (\$ |  | \$9.42 |  |  |  |  |  |


| UNIT COST CAPITOL | $\begin{aligned} & \text { UNIT COST } \\ & O \& M \end{aligned}$ | QUANTITY <br> LARGE | QUANTITY MEDIUM | QUANTITY SMALL | CAPITOL LARGE | O \& M COST LARGE | CAPITOL MEDIUM | O \& M COST MEDIUM | CAPITOL SMALL | O \& M Cost SMALL |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1.10 | 0.07 | 30,000 | 15,000 | 500 | 33,000 | 2160 | 16500 | 1080 | 550 | 36 |
| 1.10 | 0.07 | 3,600 | 6,400 | 600 | 3960 | 259 | 7040 | 461 | 660 | 43 |
| 2.25 | 0.11 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 6.25 | 0.31 | 10,000 | 4,000 | 200 | 62500 | 3125 | 25000 | 1250 | 1250 | 62.5 |
| 25 | 1.7 | 250 | 150 | 60 | 6250 | 425 | 3750 | 255 | 1500 | 102 |
| 18 | 0.9 | 250 | 150 | 60 | 4500 | 225 | 2700 | 135 | 1080 | 54 |
| 40 | 3 | 250 | 150 | 0 | 10,000 | 750 | 6000 | 450 | 0 | 0 |
| 33 | 2.6 | 2500 | 1500 | 50 | 82500 | 6600 | 49500 | 3960 | 1650 | 132 |
| 275 | 16.5 | 3 | 0 | 0 | 825 | 49.5 | 0 | 0 | 0 | 0 |
|  |  |  |  |  | \$203,535 | \$13,594 | \$110,490 | \$7,591 | \$6,690 | \$430 |
| 1.10 | 0.07 | 6,400 | 3,600 | 400 | 7040 | 461 | 3960 | 259 | 440 | 29 |
| 2.25 | 0.11 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 25.00 | 0.50 | 800 | 600 | 100 | 20000 | 400 | 15000 | 300 | 2500 | 50 |
| 25 | 1.7 | 400 | 300 | 50 | 10,000 | 680 | 7500 | 510 | 1250 | 85 |
| 18 | 0.9 | 400 | 300 | 50 | 7,200 | 360 | 5400 | 270 | 900 | 45 |
| 4 | 0.2 | 100 | 70 | 20 | 400 | 20 | 280 | 14 | 80 | 4.0 |
|  |  |  |  |  | \$44,640 | \$1,921 | \$32,140 | \$1,353 | \$5,170 | \$213 |
| 15 | 0.75 | 2500 | 1500 | 50 | 37,500 | 1875 | 22,500 | 1125 | 750 | 37.5 |
| 15 | ? | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0.48 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 3.6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  |  |  |  |  | \$37,500 | \$1,875 | \$22,500 | \$1,125 | \$750 | \$38 |
| 265 | 13.25 | 400 | 300 | 50 | 106,000 | 5300 | 79,500 | 3975 | 13250 | 662.5 |
| 110 | 8 | 0 | 0 | 0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 |
| 0 | 3.6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  |  |  |  |  | \$106,000 | \$5,300 | \$79,500 | \$3,975 | \$13,250 | \$663 |
| 10 | 0.5 | 0 | 0 | 0 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 |
| 30 | 1.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 10 | 0.5 | 100 | 60 | 2 | 1,000 | 50 | 600 | 30 | 20 | 1.0 |
| 17.5 | 0.9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 5 | 0.25 | 2500 | 1500 | 50 | 12,500 | 625 | 7500 | 375 | 250 | 12.5 |

Updated National ITS Metropolitan Infrastructure Costs Based on Updated Cost Elements, Unit Costs and Number of Metropolitan Statistical Areas

| ELEMENTS | UNIT COST CAPITOL | $\begin{aligned} & \text { UNIT COST } \\ & O \& M \end{aligned}$ | QUANTITY <br> LARGE | QUANTITY <br> MEDIUM | QUANTITY SMALL | CAPITOL LARGE | O \& M COST LARGE | CAPITOL MEDIUM | O \& M COST MEDIUM | CAPITOL SMALL | O \& M COST SMALL |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Signal Preemption: Transit, Emergency Vehicle, RR [NEW] | 2 | 0.1 | 125 | 0 | 0 | 250 | 12.5 | 0 | 0 | 0 | 0 |
| SUBTOTAL (\$K) |  |  |  |  |  | \$13,750 | \$688 | \$8,100 | \$405 | \$270 | \$14 |
| FREEWAY MANAGEMENT @ ROADSIDE |  |  |  |  |  |  |  |  |  |  |  |
| HOV lane control \& monitoring equip. | 250 | 18.8 | 10 | 8 | 0 | 2500 | 188 | 2000 | 150.4 | 0 | 0 |
| Ramp Meter Systems (per interchange) | 35 | 3.5 | 400 | 300 | 0 | 14,000 | 1400 | 10500 | 1050 | 0 | 0 |
| SUBTOTAL (\$K) |  |  |  |  |  | \$16,500 | \$1,588 | \$12,500 | \$1,200 | \$0 | \$0 |
| TRAVELER INFORMATION @ ROADSIDE/SITE |  |  |  |  |  |  |  |  |  |  |  |
| Full Matrix VMS \& Controllers (without structure) | 70 | 3.5 | 100 | 75 | 25 | 7,000 | 350 | 5250 | 262.5 | 1750 | 87.5 |
| Overhead Structure[Separated out] | 105 | 5 | 100 | 75 | 25 | 10,500 | 500 | 7875 | 375 | 2625 | 125 |
| Hybrid VMS with structure (Arterials) | 20 | 1 | 100 | 80 | 0 | 2000 | 100 | 1600 | 80 | 0 | 0 |
| Fixed HAR \& Controllers | 20 | 1 | 10 | 7 | 2 | 200 | 10 | 140 | 7.0 | 40 | 2.0 |
| Callboxes: each direction per half-mile | 5 | 0.5 | 1600 | 1200 | 0 | 8000 | 800 | 6000 | 600 | 0 | 0 |
| Kiosks | 21 | 5.5 | 200 | 150 | 50 | 4200 | 1100 | 3150 | 825.0 | 1050 | 275 |
| SUBTOTAL (\$K) |  |  |  |  |  | \$31,900 | \$2,860 | \$24,015 | \$2,150 | \$5,465 | \$490 |
| INCIDENT MANAGEMENT EQUIPMENT |  |  |  |  |  |  |  |  |  |  |  |
| Portable VMS | 40 | 2 | 15 | 10 | 10 | 600 | 30 | 400 | 20 | 400 | 20 |
| Portable HAR | 45 | 3.3 | 10 | 5 | 3 | 450 | 33 | 225 | 16.5 | 135 | 9.9 |
| Special Pickup Trucks (w. Dyn. Route Guidance) | 50 | 5 | 40 | 25 | 0 | 2000 | 200 | 1250 | 125 | 0 | 0 |
| O \& M Personnel | 0 | 50 | 40 | 30 | 5 | 0 | 2000 | 0 | 1500 | 0 | 250 |
| SUBTOTAL (\$K) |  |  |  |  |  | 3050 | 2263 | 1875 | 1661.5 | 535 | 280 |
| TRANSP. MGMT CTRS (Number per metro area) |  |  | 6 | 4 | 1 |  |  |  |  |  |  |
| Central Dispatch/Routing Equip (I per area) [NEW] | 600 | 30 | 1 | 1 | 0 | 600 | 30 | 600 | 30 | 0 | 0 |
| Computers \& Hardware/TMC | 680 | 68 | 100\% | 80\% | 70\% | 680 | 68 | 544 | 54.4 | 476 | 47.6 |
| Software (various)/TMC | 220 | 22 | 1 | 1 | 1 | 220 | 22 | 220 | 22 | 220 | 22 |
| Facilities \& Communications/TMC | 4000 | 400 | 100\% | 80\% | 70\% | 4000 | 400 | 3200 | 320 | 2800 | 280 |
| O \& M Personnel/TMC | 0 | 50 | 36 | 24 | 15 | 0 | 1800 | 0 | 1200 | 0 | 750 |
| SUBTOTAL (\$K) |  |  |  |  |  | \$30,000 | \$13,770 | \$16,456 | \$6,416 | \$3,496 | \$1,100 |
| TRAVELER INFORMATION CENTER |  |  |  |  |  |  |  |  |  |  |  |
| Computers and Hardware | 102 | 10.2 | 100\% | 80\% | 70\% | 102 | 10.2 | 81.6 | 8.16 | 71.4 | 7.14 |
| Software (various) | 300 | 15 | 1 | 1 | 1 | 300 | 15 | 300 | 15 | 300 | 15 |
| Facilities \& Communication (stand-alone) | 4000 | 400 | 100\% | 80\% | 70\% | 4000 | 400 | 3200 | 320 | 2800 | 280 |
| O \& M Personne | 0 | 50 | 30 | 25 | 10 | 0 | 1500 | 0 | 1250 | 0 | 500 |
| SUBTOTAL (\$K) |  |  |  |  |  | 4,402 | 1,925 | 3,582 | 1,593 | 3,171 | 802 |
| EMERGENCY RESPONSE CENTER |  |  |  |  |  |  |  |  |  |  |  |
| Computers \& Hardware | 400 | 20 | 100\% | 80\% | 70\% | 400 | 20 | 320 | 16 | 280 | 14 |
| Software (various) | 70 | 3.5 | 1 | 1 | 1 | 70 | 3.5 | 70 | 3.5 | 70 | 3.5 |
| Facilities \& Communications (stand-alone) | 4000 | 400 | 1 | 0.8 | 0.7 | 4000 | 400 | 3200 | 320 | 2800 | 280 |

Updated National ITS Metropolitan Infrastructure Costs Based on Updated Cost Elements，Unit Costs and Number of Metropolitan Statistical Areas

$\stackrel{\infty}{\sim}$
성ㅇㅇㅇN 우수N
$\stackrel{N}{\dot{f}} 0 \circ$ 岗
$\circ 0$
0


$\stackrel{\circ}{\circ} \stackrel{\circ}{\square}$
$\stackrel{\sim}{\sim})_{\sim}^{\circ} \stackrel{ه}{\sim}^{\circ}$
O\％O O
00000000 OO 00000 侖

읏
$\stackrel{n}{\infty}$




$\begin{array}{cc}\text { APITOL } & \text { O \＆M COST } \\ \text { ARG } & \text { LARGE } \\ 0 & 150 \\ \$ 4,470 & \$ 574\end{array}$
丽






8


$\begin{array}{cccccc}\text { UNIT COST } & \text { UNIT COST } & \text { QUANTITY } & \text { QUANTITY } & \text { QUANTITY } \\ \text { CAPITOL } & \text { O\＆M } & \text { LARGE } & \text { MEDIUM } & \text { SMALL } \\ 0 & 50 & 3 & 2 & 1\end{array}$
웅
登
$\therefore \circ^{\circ} 0$
00

$\circ \circ$ 000000

으으 ம ம 으운

－${ }^{\circ}$ ㅇㅇㅇㅇㅇㅇㅇㅇㅇ 웅 ㅇㅇㅇ
$\circ$
0
0
i
i
운ㄴㅇํ 이



$\varepsilon$
Table C-4
Updated National ITS Metropolitan Infrastructure Costs Based on Updated Cost
Updated National ITS Metropolitan Infrastructure Costs Based on Updated Cost Elements, Unit Costs and Number of Metropolitan Statistical Areas

Table C-5

|  | $\begin{gathered} \text { CAPITOL } \\ \text { COST LARGE } \\ (\$ K) \end{gathered}$ | $\begin{gathered} \text { \% DEPLOYED } \\ \text { BY } 1997 \\ \text { LARGE } \\ \hline \end{gathered}$ | CAP COST EXPENDED BY '97 LARGE (\$K) | UPDATED <br> CAP COST <br> LARGE (\$K) | $\qquad$ | $\begin{aligned} & \text { \% DEPLOYED } \\ & \text { BY } 1997 \\ & \text { MEDIUM } \\ & \hline \end{aligned}$ | CAP COST EXPENDED BY '97 MEDIUM (\$K) | $\begin{aligned} & \text { UPDATED } \\ & \text { CAP COST } \\ & \text { MEDIUM (\$K) } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SURVEILLANCE - ARTERIALS |  |  |  |  |  |  |  |  |
| Loop Detectors per signal per approach | \$33,000 | 5\% | \$1,650 |  | 16500 | 2\% | \$330 |  |
| Other arterial loop detectors | \$3,960 | 5\% | \$198 |  | 7040 | 2\% | \$141 |  |
| Overhead Point Detectors [NEW] | ? | 5\% |  |  | 0 | 2\% | \$0 |  |
| Processor ( 170 series), 1 per direction per half mile (Arterials) [NEW] | \$62,500 | 5\% | \$3,125 |  | 25000 | 2\% | \$500 |  |
| CCTV Cameras per signalized intersection | \$6,250 | 1\% | \$63 |  | 3750 | 0\% | \$0 |  |
| CCTV pole and foundation [NEW] | \$4,500 | 1\% | \$45 |  | 2700 | 0\% | $\$ 0$ |  |
| Video Image Processing/intersection | \$10,000 | 1\% | \$100 |  | 6000 | 0\% | \$0 |  |
| AVI equip. to identify priority veh./intersection [NEW] | \$82,500 | ? | \$0 |  | 49500 |  | $\$ 0$ |  |
| AVL equip (to supplement GPS)/site [NEW] | \$825 | ? | \$0 |  | 0 |  | \$0 |  |
| SURVEILLANCE - ARTERIALS | \$203,535 |  | \$5,181 | \$198,355 | \$110,490 |  | \$971 | \$109,519 |
| SURVEILLANCE - FREEWAYS |  |  |  |  |  |  |  |  |
| Loop Detectors per fwy lane per half mile | \$7,040 | 17\% | \$1,197 |  | 3960 | 3\% | \$119 |  |
| Overhead Point Detectors [NEW] | \$0 | 17\% | \$0 |  | 0 | 3\% | \$0 |  |
| Data Station (Fwy), 1 per half mile [NEW] | \$20,000 | 17\% | \$3,400 |  | 15000 | 3\% | 450 |  |
| CCTV Cameras per freeway mile | \$10,000 | 9\% | \$900 |  | 7500 | 0\% | \$0 |  |
| CCTV pole and foundation [NEW] | \$7,200 | 9\% | \$648 |  | 5400 | 0\% | \$0 |  |
| Emissions \& Environmental Sensors | \$400 | ? | \$0 |  | 280 |  | \$0 |  |
| SURVEILLANCE - FREEWAYS | \$44,640 |  | \$6,145 | \$38,495 | \$32,140 |  | $\$ 569$ | \$31,571 |
| COMMUNICATION - ARTERIALS |  |  |  |  |  |  |  |  |
| Twisted-pair to Signals (per intersection) | \$37,500 | 46\% | \$17,250 |  | 22,500 | 40\% | \$9,000 |  |
| Wireless radio [NEW] | \$0 | 43\% | \$0 |  | 0 | 35\% | \$0 |  |
| Leased line to signals [NEW] | \$0 | 46\% | \$0 |  | 0 | 40\% | \$0 |  |
| Leased line to video [NEW] | \$0 | 1\% | \$0 |  | 0 | 0\% | \$0 |  |
| COMMUNICATION - ARTERIALS | \$37,500 |  | \$17,250 | \$20,250 | \$22,500 |  | \$9,000 | \$13,500 |
| COMmUNICATION - FREEWAYS |  |  |  |  |  |  |  |  |
| Fiber-Optic Cable/freeway mile | \$106,000 | 9\% | \$9,540 |  | 79,500 | 3\% | \$2,385 |  |
| Fiber-optic hub - 1 per 5 mi. of fiber [NEW] | \$0 | 9\% | \$0 |  | 0 | 3\% | \$0 |  |
| Leased line to video [NEW] | \$0 | 9\% | \$0 |  | 0 | 3\% | \$0 |  |
| COMMUNICATION - FREEWAYS | \$106,000 | 9\% | \$9,540 | \$96,460 | \$79,500 | 3\% | \$2,385 | \$77,115 |
| TRAFFIC SIGNAL CONTROL |  |  |  |  |  |  |  |  |
| Central Computer System (Closed Loop) NEW | \$0 |  |  |  | 0 |  |  |  |
| Central Computer System (Distributed) NEW | \$0 |  |  |  | 0 |  |  |  |
| Master controllers for distributed system (1 per 25 intersections) [NEW] | \$1,000 |  |  |  | 600 |  |  |  |
| Signal controller replacement per intersection [NEW] |  |  |  |  | 0 |  |  |  |
| Signal controller upgrade (per intersection) | \$12,500 |  |  |  | 7500 |  |  |  |
| Signal Preemption: Transit, Emergency Vehicle, RR |  |  |  |  |  |  |  |  |
| ${ }_{\text {[ }}$ TREW] ${ }^{\text {TRFFIC SIGNAL }}$ CONTROL |  | ? |  |  | 0 |  |  |  |
| TRAFFIC SIGNAL CONTROL | \$13,750 | 46\% | \$6,325 | \$7,425 | \$8,100 | 40\% | \$3,240 | \$4,860 |

Table C-5
Effect of Factoring in 1997 Deployment Estimates on Future National ITS Metropolitan Infrastructure Costs

|  | $\begin{gathered} \text { CAPITOL } \\ \text { COSTARGE } \\ (\$ K) \\ \hline \end{gathered}$ | $\begin{gathered} \text { \% DEPLOYED } \\ \text { BY } 1997 \\ \text { LRGE } \\ \hline \end{gathered}$ | CAP cost EXPENDED BY '97LARGE (\$K) | UPDATED CAP COST LARGE (\$K) | $\begin{gathered} \text { CAPITOL } \\ \text { COST } \\ \text { MEDIUM }(\$ K) \\ \hline \end{gathered}$ | $\begin{gathered} \text { \% DEPLOYED } \\ \text { BY } 1997 \\ \text { MEDIUM } \\ \hline \end{gathered}$ | CAP COST EXPENDED BY '97 MEDIUM (\$K) | UPDATED CAP COST MEDIUM (\$K) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FREEWAY MANAGEMENT @ ROADSIDE |  |  |  |  |  |  |  |  |
| HOV lane control \& monitoring equip. | \$2,500 | ? | \$0 |  | 2000 |  | \$0 |  |
| Ramp Meter Systems (per interchange) | \$14,000 | 13\% | \$1,820 |  | 10500 | 1\% | \$105 |  |
| FREEWAY MANAGEMENT @ ROADSIDE | \$16,500 | 13\% | \$1,820 | \$14,680 | \$12,500 | 1\% | \$105 | \$12,395 |
| TRAVELER INFORMATION @ ROADSIDE/SITE |  |  |  |  |  |  |  |  |
| Full Matrix VMS \& Controllers (without structure) | \$7,000 |  |  |  | 5250 |  |  |  |
| Overhead Structur[Separated out] | \$10,500 |  |  |  | 7875 |  |  |  |
| Hybrid VMS with structure (Arterials) | \$2,000 |  |  |  | 1600 |  |  |  |
| Fixed HAR \& Controllers | \$200 |  |  |  | 140 |  |  |  |
| Callboxes: each direction per half-mile | \$8,000 |  |  |  | 6000 |  |  |  |
| Kiosks | \$4,200 |  |  |  | 3150 |  |  |  |
| TRAVELER INFORMATION @ ROADSIDE/SITE | \$31,900 | 22\% | \$7,018 | \$24,882 | \$24,015 | 9\% | \$2,161 | \$21,854 |
| INCIDENT MANAGEMENT EQUIPMENT |  |  |  |  |  |  |  |  |
| Portable VMS | \$600 | 31\% | \$186 |  | 400 | 5\% | \$20 |  |
| Portable HAR | \$450 | 31\% | \$140 |  | 225 | 5\% | \$11 |  |
| Special Pickup Trucks (w. Dyn. Route Guidance) | \$2,000 | 1\% | \$20 |  | 1250 | 0\% | \$0 |  |
| O \& M Personnel | \$0 | 31\% | \$0 |  | 0 | 5\% | \$0 |  |
| INCIDENT MANAGEMENT EQUIPMENT | \$3,050 | 31\% | \$346 | \$2,705 | \$1,875 | 5\% | \$31 | \$1,844 |
| TRANSP. MGMT. CTRS |  |  |  |  |  |  |  |  |
| Software (various)/TMC | \$600 |  |  |  | 600 |  |  |  |
| Computers \& Hardware/TMC | \$680 |  |  |  | 544 |  |  |  |
| Software (various)/TMC | \$220 |  |  |  | 220 |  |  |  |
| Facilities \& Communications/TMC | \$4,000 |  |  |  | 3200 |  |  |  |
| O \& M Personnel/TMC | \$0 |  |  |  | 0 |  |  |  |
| TRANSP. MGMT. CTRS | \$30,000 | 17\% | \$5,100 | \$24,900 | \$16,456 | 5\% | \$823 | \$15,633 |
| traveler information center |  |  |  |  |  |  |  |  |
| Computers and Hardware | \$102 |  |  |  | 82 |  |  |  |
| Sottware (various) | \$300 |  |  |  | 300 |  |  |  |
| Facilities \& Communication (stand-alone) | \$4,000 |  |  |  | 3200 |  |  |  |
| O \& M Personnel | \$0 |  |  |  | 0 |  |  |  |
| traveler information center | \$4,402 | 0\% | \$0 | \$4,402 | 3,582 | 0\% | \$0 | \$3,582 |
| emergency response center |  |  |  |  |  |  |  |  |
| Computers \& Hardware | \$400 |  |  |  | 320 |  |  |  |
| Software (various) | \$70 |  |  |  | 70 |  |  |  |
| Facilities \& Communications (stand-alone) | \$4,000 |  |  |  | 3200 |  |  |  |
| O \& M Personnel | \$0 |  |  |  | \$0 |  |  |  |
| EMERGENCY RESPONSE CENTER | \$4,470 | 43\% | \$1,922 | \$2,548 | 3590 | 40\% | \$1,436 | \$2,154 |
| EMERGENCY SERVICES EQUIPMENT |  |  |  |  |  |  |  |  |
| Cellular radio, comm. services per vehicle | \$990 |  |  |  | \$750 |  |  |  |

Table C-5
Effect of Factoring in 1997 Deployment Estimates on Future National ITS Metropolitan Infrastructure Costs

| CAPITOL COST LARGE (\$K) | $\begin{gathered} \text { \% DEPLOYED } \\ \text { BY } 1997 \\ \text { LARGE } \\ \hline \end{gathered}$ | CAP COST EXPENDED BY '97 LARGE (\$K) | UPDATED CAP COST <br> LARGE (\$K) | $\begin{gathered} \text { CAPITOL } \\ \text { COST } \\ \text { MEDIUM (\$K) } \\ \hline \end{gathered}$ | $\begin{gathered} \text { \% DEPLOYED } \\ \text { BY } 1997 \\ \text { MEDIUM } \\ \hline \end{gathered}$ | CAP COST EXPENDED BY '97 MEDIUM (\$K) | $\begin{aligned} & \text { UPDATED } \\ & \text { CAP COST } \\ & \text { MEDIUM (\$K) } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \$990 | 43\% | \$426 | \$564 | \$750 | 40\% | \$300 | \$450 |
| \$340 |  |  |  | 272 |  |  |  |
| \$120 |  |  |  | 120 |  |  |  |
| \$4,000 |  |  |  | 3200 |  |  |  |
| \$0 |  |  |  | 0 |  |  |  |
| \$4,460 | 23\% | \$1,026 | \$3,434 | \$ 3,592 | 2\% | \$72 | \$3,520 |
| \$12,600 | 16\% | \$2,016 |  | 7560 | 5\% | \$378 |  |
| \$0 | ? | \$0 |  | 0 |  | \$0 |  |
| \$0 | 23\% | \$0 |  | 0 | 2\% | \$0 |  |
| \$12,600 |  | \$2,016 | \$10,584 | \$7,560 |  | \$378 | \$7,182 |
| \$3,000 | 30\% | \$900 |  | 3000 |  |  |  |
| \$80 | 30\% | \$24 |  | 80 |  |  |  |
| \$0 |  |  |  | 0 |  |  |  |
| \$2,440 | 30\% | \$732 |  | 1952 |  |  |  |
| \$30,000 | 30\% | \$9,000 |  | 18000 |  |  |  |
| \$0 |  |  |  | 0 |  |  |  |
| \$14,000 | 30\% | \$4,200 |  | 8400 |  |  |  |
| \$6,000 | 1\% | \$60 |  | 3000 | 0\% |  |  |
| \$55,520 |  | \$14,916 | \$40,604 | \$34,432 | 4\% | \$1,377 | \$33,055 |
| \$2,600 | 36\% |  |  | 1300 | 36\% |  |  |
| \$2,190 |  |  |  | 730 |  |  |  |
| \$1,050 |  |  |  | 350 |  |  |  |
| \$1,875 |  |  |  | 625 |  |  |  |
| \$480 |  |  |  | 160 |  |  |  |
| \$480 |  |  |  | 160 |  |  |  |
| \$8,675 | 36\% | \$3,123 | \$5,552 | \$3,325 | 36\% | \$1,197 | \$2,128 |
| \$5,400 | 20\% | \$1,080 |  | 4320 | 9\% | \$389 |  |
| \$5,400 | 30\% | \$3,240 |  | 3240 | 4\% | \$130 |  |
| \$10,800 |  | \$4,320 | \$6,480 | \$7,560 |  | \$518 | \$7,042 |
| \$588,792 |  | \$86,472 | \$502,320 | \$371,967 |  | \$24,564 | \$347,403 |

emergency services equipment
CMERGENCY SERVICES EQUIPMENT
TRANSIT MANAGEMENT CENTER
Computers \& Hardware
Software (various)
Facilities \& Communication (stand-alone)
Computers \& Hardware
Software (various)
Facilities \& Communication (stand-alone)
O \& M Personnel
TRANSIT VEHICLE INTERFACES
Cellular radio, display, etc per vehicle
AVI Transponder (on Signal Priority routes) [NEW]
In-vehicle AVL equip. per vehicle [NEW]
TRANSIT VEHICLE INTERFACES
ELECTRONIC FARE PAYMENT SYSTEM
In Transit Mgmt Center
Central Computer System
At ticketing site
Station Controller [DELETE]
Ticket Office Machine \& Va
Ticket Vending Machines
On Transit Vehicles
Bus Farebox
Smart Card
Sys Engineering. Etc. [MOVED]
ELECTRONIC FARE PAYMENT SYSTEM
ELECTRONIC TOLL COLLECTION SYSTEM
AVI Plaza Computer equipment
Manual AVI (per lane)
Automatic AVI (per lane)
AVI Plaza Computer equipment
Manual AVI (per lane)
Automatic AVI (per lane)
Manual Automatic AVI (per lane)
AVI Dedicated (per lane)
Express AVI (per lane)
ELECTRONIC TOLL COLLECTION SYSTEM
SYS DESIGN \& INTEGRATION
TMC, TIC, EMC, Transit MC
Electronic Fare Payment Sys
TOTAL PER METRO AREA
$\mathrm{G}-\bigcirc$ әवセ」
Effect of Factoring in 1997 Deployment Estimates on Future National ITS Metropolitan Infrastructure Costs


# Addendum to the Working Paper National Costs of the Metropolitan ITS Infrastructure: Update to the FHWA 1995 Report 

## Introduction

The purpose of this addendum to the "Working Paper National Costs of the Metropolitan ITS Infrastructure: Update to the FHWA 1995 Report" (hereafter referred to as the National Costs Update) is to update the estimates of the costs remaining to deploy Intelligent Transportation System (ITS) infrastructure elements in the 75 largest metropolitan areas in the United States. Specifically, this addendum provides estimates to the deployment costs expended through 1999 and then updates the remaining costs to deploy ITS infrastructures based on this 1999 deployment cost estimate. Sections of the National Costs Update affected are 3D, 4, and 5.

Although the National Costs Update addresses costs for medium and small metropolitan areas, data to support such an analysis for 1999 expenditures is not available. Hence, this addendum addresses cost estimates for large metropolitan areas only.

## Background

The National Costs Update was prepared to provide new estimates of the costs to deploy Intelligent Transportation System (ITS) infrastructure elements in the largest metropolitan areas in the United States. It built upon estimates that were distributed in June 1995 by Federal Highway Administration (FHWA) ${ }^{1}$. In building upon these 1995 cost estimates, new cost elements were added and deleted, unit cost values were updated, and quantities for metropolitan areas were updated. These modifications were based on new sources of ITS cost estimates and were necessary to establish a base case for estimating the needed ITS investment. Estimates of the costs to reach full deployment were calculated and presented in detailed cost tables in the report. Since that time new cost data sources are again available; hence, it is useful to update the national deployment cost estimate. This addendum addresses new estimates of the costs to deploy ITS infrastructure elements in the largest metropolitan areas in the United States based on 1999 deployment data. The base case or total needed capital investment established in the National Costs Update remains unchanged.

## Changes to Market Penetration in Base Year

As stated in section 3D, it is important to recognize and account for previous ITS investments in making estimates of the remaining costs to deploy ITS infrastructure. To account for these previous investments, the amount of market penetration for the various cost elements for the current time period must be known. The 1997 deployment

[^11]percentages ${ }^{2}$ were factored into the National Costs Update cost tables to produce estimates of the percentages of the needed capital investment that had already been spent and subtracted from the total needed capital to provide estimates of the investment still to be made. Since 1999 ITS deployment data ${ }^{3}$ is now available, those estimates can be updated.

The same methodology used to develop the 1997 deployment estimates on future national ITS costs was used for this 1999 update with the following exceptions:

- The 1999 estimate is for large metropolitan areas only. The 1997 deployment report divided the 78 largest metropolitan areas (see footnote 21 and table 2-2 in the National Costs Update) into three size classes. A methodology was developed to use deployment data from the three class sizes to estimate the capital cost expended through 1997 for generic medium and small size metropolitan areas. (Note that the national-level deployment data was used to estimate the cost expended through 1997 for a generic large metropolitan area.) The 1999 report does not provide deployment data based on these size classes. Only deployment data at the national level is provided. Thus, 1999 cost estimates could not be calculated for generic medium and small size metropolitan areas.
- The 1999 cost estimate accounts for deployment of Traveler Information Centers. The 1997 cost estimate does not account for any deployment of these centers. Traveler Information Centers were not included because the deployment tracking indicators from the 1997 report did not adequately represent deployment of Traveler Information Centers. There are many examples of these centers deployed in the U.S. today. Although the indicators used in the 1999 report have not changed, to not account for them in the 1999 cost expenditures would seem to present an inaccurate cost estimate.

The 1999 deployment percentages can be factored into the cost tables to produce estimates of the percentages of the needed capital investment that has already been spent, and thus can be subtracted from the total needed capital to provide estimates of the investments that must still be made. The effects on the detailed cost estimates of using the 1999 deployment survey data are shown in table 1. The columns in this table are defined as follows:

- ITS ELEMENTS and CAPITAL COSTS LARGE - are reproduced from table C-5.
- \% DEPLOYED BY 1999 LARGE - have been taken from the figures in reference 3.

[^12]Table 1
Effect of Factoring in 1999 Deployment Estimates on Future National ITS Metropolitan Infrastructure Costs

|  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: |
| ITS ELEMENTS |  |  | CAPITAL | REMAINING |
| CAPITAL |  |  |  |  |

Table 1
Effect of Factoring in 1999 Deployment Estimates on Future National ITS Metropolitan Infrastructure Costs

| ITS ELEMENTS | $\begin{gathered} \text { CAPITOL } \\ \text { COSTS } \\ \text { LARGE (\$K) } \end{gathered}$ | $\begin{gathered} \text { \% DEPLOYED } \\ \text { BY } 1999 \\ \text { LARGE } \\ \hline \end{gathered}$ | CAPITAL COSTS EXPENDED BY '99 LARGE (\$K) | $\begin{aligned} & \text { REMAINING } \\ & \text { CAPITAL } \\ & \text { COSTS } \\ & \text { LARGE (\$K) } \\ & \hline \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
| Special Pickup Trucks (w. Dyn. Route Guidance) | \$2,000 | 2\% | \$40 |  |
| O \& M Personnel | \$0 | 38\% | \$0 |  |
| INCIDENT MANAGEMENT EQUIPMENT | \$3,050 | 14\% | \$439 | \$2,611 |
| TRANSP. MGMT. CTRS |  |  |  |  |
| Software (various)/TMC | \$600 |  |  |  |
| Computers \& Hardware/TMC | \$680 |  |  |  |
| Software (various)/TMC | \$220 |  |  |  |
| Facilities \& Communications/TMC | \$4,000 |  |  |  |
| O \& M Personnel/TMC | \$0 |  |  |  |
| TRANSP. MGMT. CTRS | \$30,000 | 22\% | \$6,600 | \$23,400 |
| TRAVELER INFORMATION CENTER |  |  |  |  |
| Computers and Hardware | \$102 |  |  |  |
| Software (various) | \$300 |  |  |  |
| Facilities \& Communication (stand-alone) | \$4,000 |  |  |  |
| O \& M Personnel | \$0 |  |  |  |
| TRAVELER INFORMATION CENTER | \$4,402 | 22\% | \$968 | \$3,434 |
| EMERGENCY RESPONSE CENTER |  |  |  |  |
| Computers \& Hardware | \$400 |  |  |  |
| Software (various) | \$70 |  |  |  |
| Facilities \& Communications (stand-alone) | \$4,000 |  |  |  |
| O \& M Personnel | \$0 |  |  |  |
| EMERGENCY RESPONSE CENTER | \$4,470 | 66\% | \$2,950 | \$1,520 |
| EMERGENCY SERVICES EQUIPMENT |  |  |  |  |
| Cellular radio, comm. services per vehicle | \$990 |  |  |  |
| EMERGENCY SERVICES EQUIPMENT | \$990 | 66\% | \$653 | \$337 |
| TRANSIT MANAGEMENT CENTER |  |  |  |  |
| Computers \& Hardware | \$340 |  |  |  |
| Software (various) | \$120 |  |  |  |
| Facilities \& Communication (stand-alone) | \$4,000 |  |  |  |
| O \& M Personnel | \$0 |  |  |  |
| TRANSIT MANAGEMENT CENTER | \$4,460 | 30\% | \$1,338 | \$3,122 |
| TRANSIT VEHICLE INTERFACES |  |  |  |  |
| Cellular radio, display, etc per vehicle | \$12,600 | 10\% | \$1,260 |  |
| AVI Transponder (on Signal Priority routes) [NEW] | \$0 |  | \$0 |  |
| In-vehicle AVL equip. per vehicle [NEW] | \$0 | 30\% | \$0 |  |
| TRANSIT VEHICLE INTERFACES | \$12,600 | 10\% | \$1,260 | \$11,340 |
| ELECTRONIC FARE PAYMENT SYSTEM <br> In Transit Mgmt Center |  |  |  |  |
| Central Computer System | \$3,000 | 45\% | \$1,350 |  |
| Training \& Documentation At ticketing site | \$80 | 45\% | \$36 |  |
| Station Controller [DELETE] | \$0 |  |  |  |
| Ticket Office Machine \& Validator | \$2,440 | 45\% | \$1,098 |  |
| Ticket Vending Machines | \$30,000 | 45\% | \$13,500 |  |
| Turnstile [DELETE] | \$0 |  |  |  |
| On Transit Vehicles |  |  |  |  |
| Bus Farebox | \$14,000 | 45\% | \$6,300 |  |
| Smart Card | \$6,000 | 3\% | \$180 |  |
| Sys Engineering. Etc. [MOVED] |  |  |  |  |
| ELECTRONIC FARE PAYMENT SYSTEM | \$55,520 | 40\% | \$22,464 | \$33,056 |
| ELECTRONIC TOLL COLLECTION SYSTEM |  |  |  |  |
| AVI Plaza Computer equipment | \$2,600 |  |  |  |
| Manual AVI (per lane) | \$2,190 |  |  |  |
| Automatic AVI (per lane) | \$1,050 |  |  |  |
| Manual Automatic AVI (per lane) | \$1,875 |  |  |  |

Table 1
Effect of Factoring in 1999 Deployment Estimates on Future National ITS Metropolitan Infrastructure Costs


- CAPITAL COSTS EXPENDED BY '99 LARGE - are the product of the CAPITAL COSTS LARGE and \% DEPLOYED BY 1999 LARGE. This column gives the estimated dollar expenditure on ITS metropolitan deployment through 1999.
- REMAINING CAPITAL COSTS LARGE - provides estimate of the remaining investment needed for large metropolitan areas.

By comparing the detailed estimates in table 1 with those for 1997 in National Costs Update table C-5, it can be determined which cost elements have the largest reduction in future costs due to taking into account the investments that have already occurred. However, since some of the estimates in both tables are only for the cost element groups, the group-level will be used for this reporting. The largest increases in expenditures from 1997 to 1999 are 23\% in Emergency Response Centers, 23\% in Emergency Services Equipment, and 23\% in System Design and Integration.

The comparison of the new summary cost estimates with those in the National Costs Update table 3-7 are shown in table 2. Table 2 indicates that approximately $19.2 \%$ of the needed capital cost for ITS for large metropolitan areas was expended through 1999. This is an increase of $4.5 \%$ from the 1997 expenditures of $14.7 \%$. Although the 1997 summary cost estimate in table 3-7 is based on 60 as the number of large Metropolitan Statistical Areas (MSAs) (see section 3C for changes to the number of MSAs), the national summary results are reported based on large MSAs of 75. For comparative purposes, national summary cost estimates for large metropolitan areas of 60 are included in table 2. Because O\&M costs for all ITS capital costs (both expended and remaining) must be accounted for, the estimates for annual O\&M costs (see table C-4) remain unchanged.

Table 2
Comparison of 1999 Full Deployment Summary Costs: With and Without Addition of ORNL 1997 Deployment Levels

| Geographic Descriptor | Capital <br> Costs: <br> Without <br> Considering Deployment Levels | Capital <br> Costs: With ORNL 1997 <br> Deployment Levels | Capital Costs: <br> With ORNL 1999 <br> Deployment Levels | Annual O\&M Costs: <br> Unchanged by 1999 <br> Deployment Levels |
| :---: | :---: | :---: | :---: | :---: |
| Generic Large Area | \$589M | \$502M | \$476M | \$58M |
| Large Metropolitan Areas: |  |  |  |  |
| 60 | \$35.3B | \$30.1B | \$28.6B | \$3.5B |
| 75 | \$44.2B | \$37.7B | \$35.7B | \$4.3B |
| \% Difference | N/A | -14.7\% | -19.2\% | N/A |

Note: Numbers are rounded

## Alternative Values of Full Market Penetration

Just as it was important in the previous section to use the current market penetration estimates to reduce the estimate of still-needed investments, it is also important to determine the maximum amount of needed infrastructure investment. Section 4 described four proposed maximum levels that generally fall into one of two categories: what could be deployed and what should be deployed. It is believed that cost estimates presented thus far reflect the maximum amount of deployment or what could be deployed (based on the current definitions of the metropolitan ITS infrastructure). To show how the level of full deployment might affect the estimate of investment needs, a simple parametric analysis of the values for full market penetration was performed for the National Costs Update. A similar parametric analysis has been performed for this addendum. This analysis was carried out for the generic large metropolitan area using four different constant values for all cost elements for the percent that the "should" deployment levels might be of the "could" level. The four values are $33 \%, 50 \%, 67 \%$, and $80 \%$. The lower parametric value of $33 \%$ was added to this analysis to broaden the range of possible "should" levels.

The approach for calculating the results for these various levels is to start with information in table 1, and then add the appropriate constant value for the "should" level.

It can be shown algebraically that as long as the percent for the "should" level is larger than the largest value for the 1999 percent deployment shown in table 1 (this value is $66 \%$ ), then the calculations for estimating the remaining costs for alternative values of full market penetration can be carried out at the aggregate level. For the four "should" levels only the $80 \%$ and $67 \%$ can be carried out at the aggregate level. The calculations for the $50 \%$ and $33 \%$ "should" levels could not be carried out at the aggregate level because, at these lower deployment levels we need to account for instances where ITS expenditures to date are greater than the "should" level capital cost. To not account for these "over expenditures" would misrepresent the investment needed to reach the "should" level.

Simplified versions of this calculation have been carried out using only the top-level or major ITS cost elements with the "should" level set to $50 \%$ and $33 \%$ of the could level. The results are shown in tables 3 and 4, respectively. The expenditures through 1999 are the top-level values from table 1. By carrying out the calculations and summing the columns, it can be seen that the total investment needed is \$294 million at $50 \%$ and $\$ 194$ million at $33 \%$ for the generic large area instead of $\$ 589$ million. Furthermore, taking into account that $\$ 113$ million has already been deployed through 1999, only $\$ 183$ million and $\$ 98$ million is remaining, respectively. The calculations for the other values of the should level have been carried out at the aggregate level, and are presented in table 5 and figure 1 along with the results from tables 3 and 4.

Making estimates of the investment needed at the national level depends quite heavily on the values estimated for the "should" level and base year deployment levels. These

Table 3
Effect of Setting Full Deployment at 50\% of "Could" Case for Generic Large Areas

GENERIC LARGE METRO AREA

| Major ITS Cost Elements | Capital Cost for Could Case (\$K) |  | Capital Cost Expended Through 1999 (\$K) | Should Case at $50 \%$ of Could Case (\$K) | $\begin{gathered} \text { Should Case - } \\ 1999 \\ \text { Expenditure } \\ (\$ K) \\ \hline \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| SURVEILLANCE - ARTERIALS | \$203,535 |  | \$9,159 | \$101,768 | \$92,609 |
| SURVEILLANCE - FREEWAYS | \$44,640 |  | \$8,357 | \$22,320 | \$13,963 |
| COMMUNICATION - ARTERIALS | \$37,500 |  | \$17,250 | \$18,750 | \$1,500 |
| COMMUNICATION - FREEWAYS | \$106,000 |  | \$14,840 | \$53,000 | \$38,160 |
| TRAFFIC SIGNAL CONTROL | \$13,750 |  | \$6,325 | \$6,875 | \$550 |
| Freeway Management @ Roadside | \$16,500 |  | \$1,120 | \$8,250 | \$7,130 |
| Traveler Information @ Roadside | \$31,900 |  | \$8,613 | \$15,950 | \$7,337 |
| INCIDENT MANAGEMENT EQUIPMENT | \$3,050 |  | \$439 | \$1,525 | \$1,086 |
| TRANSPORTATION MGMT CENTERS | \$30,000 |  | \$6,600 | \$15,000 | \$8,400 |
| TRAVELER INFORMATION CENTER | \$4,402 |  | \$968 | \$2,201 | \$1,233 |
| EMERGENCY RESPONSE CENTER | \$4,470 |  | \$2,950 | \$2,235 |  |
| EMERGENCY SERVICES EQUIPMENT | \$990 |  | \$653 | \$495 |  |
| TRANSIT MANAGEMENT CENTER | \$4,460 |  | \$1,338 | \$2,230 | \$892 |
| TRANSIT VEHICLE INTERFACES | \$12,600 |  | \$1,260 | \$6,300 | \$5,040 |
| ELECTRONIC FARE PAYMENT SYS | \$55,520 |  | \$22,464 | \$27,760 | \$5,296 |
| ELECTRONIC TOLL COLLECTION SYS | \$8,675 |  | \$3,730 | \$4,338 | \$608 |
| SYS DESIGN \& INTEGRATION | \$10,800 |  | \$6,750 | \$5,400 |  |
| TOTAL PER METRO AREA | \$588,792 |  | \$112,816 | \$294,396 | \$183,803 |
| Derived Percentage of Full Deployment Capital Cost Expended Through 1999 |  | 19.2\% |  |  |  |
| Aggregate Level Calculations Using Derived Percentage | \$588,792 | 19.2\% | \$112,816 | \$294,396 | \$181,580 |

Table 4
Effect of Setting Full Deployment at 33\% of "Could" Case for Generic Large Areas

GENERIC LARGE METRO AREA

| Major ITS Cost Elements | Capital Cost for Could Case (\$K) |  | Capital Cost Expended Through 1999 (\$K) | Should Case at $33 \%$ of Could Case (\$K) | Should Case - <br> 1999 <br> Expenditure <br> (\$K) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| SURVEILLANCE - ARTERIALS | \$203,535 |  | \$9,159 | 67,167 | \$58,008 |
| SURVEILLANCE - FREEWAYS | \$44,640 |  | \$8,357 | 14,731 | \$6,374 |
| COMMUNICATION - ARTERIALS | \$37,500 |  | \$17,250 | 12,375 |  |
| COMMUNICATION - FREEWAYS | \$106,000 |  | \$14,840 | 34,980 | \$20,140 |
| TRAFFIC SIGNAL CONTROL | \$13,750 |  | \$6,325 | 4,538 |  |
| Freeway Management @ Roadside | \$16,500 |  | \$1,120 | 5,445 | \$4,325 |
| Traveler Information @ Roadside | \$31,900 |  | \$8,613 | 10,527 | \$1,914 |
| INCIDENT MANAGEMENT EQUIPMENT | \$3,050 |  | \$439 | 1,007 | \$568 |
| TRANSPORTATION MGMT CENTERS | \$30,000 |  | \$6,600 | 9,900 | \$3,300 |
| TRAVELER INFORMATION CENTER | \$4,402 |  | \$968 | 1,453 | \$485 |
| EMERGENCY RESPONSE CENTER | \$4,470 |  | \$2,950 | 1,475 |  |
| EMERGENCY SERVICES EQUIPMENT | \$990 |  | \$653 | 327 |  |
| TRANSIT MANAGEMENT CENTER | \$4,460 |  | \$1,338 | 1,472 | \$134 |
| TRANSIT VEHICLE INTERFACES | \$12,600 |  | \$1,260 | 4,158 | \$2,898 |
| ELECTRONIC FARE PAYMENT SYS | \$55,520 |  | \$22,464 | 18,322 |  |
| ELECTRONIC TOLL COLLECTION SYS | \$8,675 |  | \$3,730 | 2,863 |  |
| SYS DESIGN \& INTEGRATION | \$10,800 |  | \$6,750 | 3,564 |  |
| TOTAL PER METRO AREA | \$588,792 |  | \$112,816 | \$194,301 | \$98,145 |
| Derived Percentage of Full Deployment Capital Cost Expended Through 1999 |  | 19.2\% |  |  |  |
| Aggregate Level Calculations <br> Using Derived Percentage | \$588,792 | 19.2\% | \$112,816 | \$194,301 | \$81,485 |

Table 5
Parametric Analysis of Changing From the "Could" Case Full Deployment Level to Various "Should" Cases
Note: The overall 1999 Deployment Percentage is derived in Table 1.
*Values are from tables 3 and 4, respectively.
Figure 1: Results of Parametric Analysis of Different Levels of Full Deployment Along With

values will vary, not only by cost element, but by geographic region and transportation networks of each metropolitan area.

## Summary and Conclusions

Applying the 1999 deployment data ${ }^{4}$ to the cost tables provided in the National Costs Update provides a second set of data points with which to gauge the trend in ITS infrastructure deployment expenditures and to estimate the investment still to be made. The results show that progress is being made toward deployment of ITS infrastructure elements; hence, a reduction in the still-needed investment.

Table 6 shows ITS infrastructure trends from 1997 through 1999. To track trends from 1995 forward would portray unrealistic and inconclusive results because data on the extent of ITS deployment did not exist at that time. As shown in the National Costs Update, the update to the FHWA 1995 cost estimate resulted in a net increase in the needed ITS infrastructure investment (i.e., the base case needed investment). It is from this base case that the deployment tracking data was applied with 1997 deployment data and again in this addendum with 1999 deployment tracking data to determine the stillneeded investment.

Table 6
ITS Infrastructure Costs Trends from 1997 through 1999

| $\begin{array}{c}\text { Geographic } \\ \text { Descriptor }\end{array}$ | $\begin{array}{c}\text { Capital } \\ \text { Costs: Base } \\ \text { Case }\end{array}$ | $\begin{array}{c}\text { Capital } \\ \text { Costs: With } \\ \text { ORNL 1997 } \\ \text { Deployment } \\ \text { Levels }\end{array}$ | $\begin{array}{c}\text { Capital Costs: } \\ \text { With ORNL } \\ 1999 \\ \text { Deployment } \\ \text { Levels }\end{array}$ | $\begin{array}{c}\text { Annual O\&M } \\ \text { Costs: }\end{array}$ |
| :--- | :---: | :---: | :---: | :---: |
| Unchanged by |  |  |  |  |
| 1999 |  |  |  |  |
| Deployment |  |  |  |  |
| Levels |  |  |  |  |$]$

Note: Numbers are rounded

Approximately $19.2 \%$ of the needed capital costs for ITS large metropolitan areas has been expended through 1999. This value has increased by $4.5 \%$ from the 1997 expenditures of $14.7 \%$. Accounting for expenditures through 1997, national capital costs for the largest 75 metropolitan areas were estimated at $\$ 37.7$ billion. The same estimate accounting for expenditures through 1999 is approximately $\$ 35.7$ billion. This equates to capital expenditures of approximately $\$ 1$ billion per year over the two years. The estimate for annual O\&M costs (see table C-4 of the National Costs Update) remains unchanged when the market penetration for the current time period is factored in.

[^13]To investigate how the level of deployment might affect the estimate of investment needs, a parametric analysis similar to that performed in the National Costs Update was performed for the generic large metropolitan area. This analysis was performed for four different constant values - $33 \%, 50 \%, 67 \%$, and $80 \%$ - with the constant values each representing the percent that the "should" deployment levels might be of the "could" (full deployment) level. The $100 \%$ level was defined as the "could" case, while the lower levels were defined as possible "should" cases. The lower value of $33 \%$ was included in this analysis to broaden the range of possible "should" cases.

Using a "should" case of 67\% of the "could" case, the generic large area would need only $\$ 395$ million, instead of $\$ 589$ million. Furthermore, taking into account that $\$ 113$ million has already been deployed through 1999, only $\$ 282$ million is needed. Making estimates of the investment needed at the national level depends quite heavily on the values estimated for the "should" case and base year deployment levels. These values will vary, not only by cost element, but by geographic region and transportation networks of each metropolitan area.

## Next Steps

As additional deployment tracking data become available, perhaps on an annual basis, the estimates of the still-needed investment can be updated. By receiving annual deployment data, ITS infrastructure deployment expenditures and trends can be better tracked and analyzed.


[^0]:    ${ }^{1}$ Office of Traffic Management and Intelligent Transportation Systems (HTV-10), Cost Estimate and Assumptions for the Core Infrastructure, FHWA, June 1995. The ITS Infrastructure was called the Core Infrastructure in 1995.

[^1]:    ${ }^{1}$ Office of Traffic Management and Intelligent Transportation Systems (HTV-10), Cost Estimate and Assumptions for the Core Infrastructure, FHWA, June 1995. The ITS Infrastructure was called the Core Infrastructure in 1995.
    ${ }^{2}$ Rockwell International, IVHS Architecture, Initial Cost Analysis, FHWA, October 1994
    ${ }^{3}$ According to reference 1, cost data were obtained from transportation agencies in Texas, Virginia, Massachusetts, Washington, Georgia, Minnesota, Maryland, Delaware, and California.
    ${ }^{4}$ TransCore, Appendix E to Draft Version of ITS Planning Handbook, January 1996, unpublished.
    ${ }^{5}$ CH2M Hill, Seattle ITS Case Study, Alternative Cost Estimate Spreadsheets, under contract to Mitretek Systems, January 1998
    ${ }^{6}$ Joint Architecture Team, ITS Architecture Cost Analysis, Federal Highway Administration, June 1996; Daniels, Ginger, et al., Guidelines for Funding Operations and Maintenance of ITS/ATMS, Texas Transportation Institute, August 1996

[^2]:    ${ }^{7}$ Joint Architecture Team, ITS Architecture, Evaluatory Design, FHWA, 1996

[^3]:    ${ }^{8}$ Office of Traffic Management and Intelligent Transportation Systems (HTV-10), Cost Estimate and Assumptions for the Core Infrastructure, FHWA, June 1995.
    ${ }^{9}$ See Cheslow, Melvyn, Working Paper: The ITS Cost Data Repository at Mitretek Systems, Mitretek Systems, November 1998
    ${ }^{10}$ Joint Architecture Team, ITS Architecture Cost Analysis, FHWA, June 1996
    ${ }^{11}$ Mitretek Systems, Building the ITI: Putting the National Architecture into Action, FHWA, April 1996
    ${ }^{12}$ TransCore, Appendix E to Draft Version of ITS Planning Handbook, January 1996, unpublished
    ${ }^{13}$ CH2M Hill, Seattle ITS Case Study, Alternative Cost Estimate Spreadsheets, under contract to Mitretek Systems, January 1998

[^4]:    ${ }^{14}$ In fact, new signal control and freeway control categories had been utilized in Table C-1, as compared to Table 2-1. However, it appeared that there would still be accounting difficulties when the cost elements from the two new sources were introduced. Hence more extensive changes to the taxonomy were made.

[^5]:    ${ }^{15}$ It may be somewhat difficult to trace these changes since the categorizations change.

[^6]:    ${ }^{16}$ The $\$ 82 \mathrm{M}$ for AVI equipment at intersections, and $\$ 62 \mathrm{M}$ for 170 series processors on arterials are based on assumption of extensive deployment for each ITS element.

[^7]:    ${ }^{20}$ Gordon, Steve, and Trombly, Jeffrey, Tracking the Deployment of the Integrated Metropolitan ITS Infrastructure in the USA: FY 1997 Results, Report FHWA-JPO-99-001, September 1998

[^8]:    ${ }^{21}$ FHWA had 75 MSAs in their "large" category, while Apogee had 60 MSAs, and ORNL had 78 metropolitan areas. FHWA and Apogee used the Census Bureau's MSA boundaries and populations, while ORNL used MPO boundaries and populations. Developing 1997 deployment estimates for the MSA boundaries would probably not make major changes on the results in the current paper, due to basing the costs on generic metropolitan areas.

[^9]:    ${ }^{22}$ The annual O\&M cost estimates are for a period after all of the ITS capital costs have been made. In the near future, the annual O\&M costs will grow, year by year, as the ITS deployments are completed, and become operational.

[^10]:    ${ }^{23}$ The $14.8 \%$ value differs from the $14.7 \%$ at the end of Table C-5, because the calculation in this section was carried out with the simplified version of the list of cost elements.

[^11]:    ${ }^{1}$ Office of Traffic Management and Intelligent Transportation Systems (HTV-10), Cost Estimate and Assumptions for the Core Infrastructure, FHWA, June 1995. The ITS Infrastructure was called the Core Infrastructure in 1995.

[^12]:    ${ }^{2}$ Gordon, Steve, and Trombly, Jeffrey, Tracking the Deployment of the Integrated Metropolitan ITS Infrastructure in the USA: FY 1997 Results, Report FHWA-JPO-99-001, September 1998.
    ${ }^{3}$ Gordon, Steve, and Trombly, Jeffrey, Tracking the Deployment of the Integrated Metropolitan ITS Infrastructure in the USA: FY99 Results, Report FHWA-OP-00-016, May 2000.

[^13]:    ${ }^{4}$ FHWA, 2000, ibid.

